Practical
MATLAB and Python

A comparative approach to problem-solving to code like a pro

-

= _.\-av [P
ey s

T—
-

A
| 5=t
.

Dr. Mamta Kapnnr h

"-.
o O

-*'

L
"i

Dr. Geeta Arnra [

Practical
MATLAB and Python

A comparative approach to problem-solving to code like a pro

ek

- 2 Dr. Mamt

| I:_)F.'Ge eta Arora

Practical

MATLAB and
Python

A comparative approach to problem-
solving to code like a pro

Dr. Mamta Kapoor
Dr. Geeta Arora

www.bpbonline.com

https://www.bpbonline.com/

First Edition 2026
Copyright © BPB Publications, India

ISBN: 978-93-65891-263

All Rights Reserved. No part of this publication may be reproduced, distributed or transmitted in any
form or by any means or stored in a database or retrieval system, without the prior written permission
of the publisher with the exception to the program listings which may be entered, stored and executed
in a computer system, but they can not be reproduced by the means of publication, photocopy,
recording, or by any electronic and mechanical means.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY

The information contained in this book is true and correct to the best of author’s and publisher’s
knowledge. The author has made every effort to ensure the accuracy of these publications, but the
publisher cannot be held responsible for any loss or damage arising from any information in this
book.

All trademarks referred to in the book are acknowledged as properties of their respective owners but
BPB Publications cannot guarantee the accuracy of this information.

To View Complete
BPB Publications Catalogue
Scan the QR Code:

www.bpbonline.com

https://www.bpbonline.com/

Dedicated to

This book is dedicated to Almighty God for giving me the
strength that illuminated every step of this journey.
Furthermore, it is dedicated to my beloved parents, whose
blessings, love, and sacrifices have been the foundation for

the creation of this work.
- Dr. Mamta Kapoor

This book is dedicated to the Divine Power that has blessed
me with a family whose love, care, and support have
empowered me to chase my aspirations and realize my

potential.
- Dr. Geeta Arora

About the Authors

 Dr. Mamta Kapoor is a mathematician and researcher. Her research
areas are numerical approximation of linear and non-linear partial
differential equations, semi-analytical solution of fractional partial
differential equations, fractional calculus, fuzzy calculus, scientific
computing, numerical analysis, and fluid mechanics. She has 58
research publications in national/international journals of repute
(Scopus indexed). Along with this research, she has a number of
certifications in data science due to her deep interest in this field.
Some of the related certifications are: Professional Certificate Course
in data science from E & ICT Academy, IIT Kanpur; Advanced
Certification in applied data science, Machine Learning & IoT
organized by E & ICT Academy, Indian Institute of Technology,
Guwahati; etc.

e Dr. Geeta Arora is a mathematician and researcher. She earned her
Ph.D. in mathematics from IIT Roorkee in 2011. Her research
focuses on the development of numerical methods and statistics, with
specific interests in computational techniques, numerical analysis,
partial differential equations, working with collocation methods,
differential quadrature techniques, wavelets, and radial basis
functions. She has a substantial publication record, including around
85 research papers (Scopus indexed) in international and national
journals. Additionally, she has authored 15 book chapters, written
books on Vedic Mathematics and Essential Statistics, and edited
several books on numerical methods. She has also conducted various
short-term courses and workshops on MATLAB programming and
applications, along with Vedic Mathematics.

7
L X4

About the Reviewers

Vishi Singh Bhatia is a seasoned IT professional with a master’s in
information technology with over 17 years of IT experience spanning
roles such as software developer, business analyst, functional lead, and
architect, primarily within the healthcare insurance and pharmacy
domain.

Recognized among the top 1% mentors on Topmate and honored with
the People’s Choice Award. He has served as a judge for prestigious
technical awards, including the Globee Awards and Claro, as well as for
international conferences such as the 8th International Conference on
Intelligent Computing and Communication and the 2025 International
Conference on applied artificial intelligence and innovation.
Additionally, he has contributed as a reviewer for multiple books.

He has a proven track record of leading cross-functional teams across
global locations, and driving large-scale transformation programs for
Fortune 500 clients. Vishi has extensive experience in legacy
modernization initiatives, successfully executing projects that integrate
Al and cloud technologies. He is currently working at Tata Consultancy
Services Limited and 1s part of the healthcare unit, where he is helping
Fortune 500 companies undergo their digital transformation.

Certifications and affiliations: IEEE Senior Member, ACM, AAAI,
judge in various hackathons and technical awards, PMP Certified and
PMP Mentor, CSM, Azure Certified, ITIL, ISTQB, AHIP (Parts A &
B).

Gowtham is a seasoned Al professional with over 14 years of industry
experience, transitioning from a data scientist to a lead Al engineer. He
brings deep expertise across diverse domains, including healthcare,
fintech, life sciences, and the automobile industry.

He has architected and delivered a wide range of data science solutions
— from health insurance claim processing and claim amount
forecasting to privacy-focused applications in fintech, leveraging
computer vision and NLP for KYC document verification. In life
sciences, he has designed and deployed generative Al solutions using
LangChain, LangGraph, MCP, and OpenAl models — integrated with
modern vector databases such as Qdrant and Weaviate — to assist in
selecting the right candidates for clinical trials and driving advanced
research insights.

Currently, he is working in the automobile sector as a lead Al engineer,
where he applies GenAl, MCP, and vector database—driven solutions to
transform warranty-related claims processing and optimize operational
efficiency. His work spans developing and deploying innovative Al
systems powered by Python and Rust that leverage retrieval-
augmented generation (RAG) and multi-agent workflows to address
complex real-world problems at scale.

He is passionate about applying Al responsibly and at scale, helping
organizations reimagine processes, unlock business value, and
maximize their technological investments.

Acknowledgements

First and foremost, we are profoundly grateful to our families for their
unwavering support, encouragement, and understanding throughout this
journey. Their love and motivation have been a constant source of strength
and inspiration.

We extend our heartfelt thanks to BPB Publications for their expert
guidance and continued support in transforming this manuscript into a
published work. Their professionalism and assistance were invaluable in
navigating the various stages of the publication process.

We also wish to acknowledge the contributions of the technical reviewers
and editors whose thoughtful feedback and insights played a crucial role in
refining and enhancing the quality of this book.

Finally, we are thankful to our readers for their interest and trust in our
work. Your encouragement is deeply valued and continues to inspire us.

To all who have contributed in any way to the completion of this book—
your efforts and support are sincerely appreciated.

Preface

Writing efficient and structured code has emerged as an essential skill
across different domains such as engineering, scientific computing, data
analysis, data science, machine learning, mathematical modeling, and
research fields. Among several tools available, MATLAB and Python are
noted as the two widely adopted programming languages, each with its own
strengths and applications.

This book is created to develop a common understanding of these two
languages among readers. It provides a learning guide as well as a practical
reference for the students, educators, researchers, data analysts, data
scientists, and professionals who wish to gain proficiency in these two
languages and to enhance their coding skills as well.

Initiating with the basic concepts, this book covers a wide range of topics,
including variables, data types, control structures, functions, data handling,
plotting, and advanced topics such as signal and image processing. Each
chapter provides the key functionalities in MATLAB and Python with
comparative examples. This side-by-side comparison will help readers
identify the syntax differences, conceptual similarities, and distinct
strengths. Real-world applications and practice exercises are incorporated to
reinforce the learning process and to bridge the gap between theory and
practice.

Whether you are a beginner who is exploring the programming scope in
scientific domains or an experienced professional, this book is designed to
enhance your coding and problem-solving skills. By the end of this journey,
readers will gain the ability to make suitable choices in tool selection and
apply their coding skills in different domains, including data analysis, data
science, scientific computing, etc.

Chapter 1: Introduction to MATLAB and Python- This chapter provides
a basic introduction to the languages MATLAB and Python. By the end of

this chapter, you will have an understanding of the key differences and
strengths of MATLAB and Python. Moreover, you will learn how to set up
and navigate the respective programming environments. Apart from this,
you will gain familiarity with fundamental operations, data structures, and
functions in both languages.

Chapter 2: MATLAB and Python Variables and Data Types- A
thorough explanation of the variables and data types in MATLAB and
Python, is given this chapter, respectively. This chapter covers a number of
topics, including how to define variables in MATLAB, how to use arrays
and matrices in MATLAB, and how to use strings and structures in
MATLAB. Several subjects are introduced in relation to Python, such as
declaring variables, data types, and strings, lists, tuples, dictionaries, and
sets. Additionally, a comparison of Python and MATLAB is given through a
number of examples. You may practice the topics they have learnt by
completing the assignment at the end of the chapter.

Chapter 3: Basic Operations in MATLAB and Python Languages- We
will examine the basic functions and operations of two potent programming
languages—Python and MATLAB—in this chapter. Engineers and
scientists like MATLAB because of its well-known prowess in numerical
computations, especially in arithmetic and matrix operations. We will
examine how well it can execute logical operations, sophisticated matrix
manipulations, and fundamental arithmetic operations—all of which are
critical for data analysis and algorithm creation. However, Python, which is
well-known for its ease of use and adaptability, has a wide range of
features, such as list operations, string manipulation, arithmetic operations,
and several built-in functions that make it appropriate for data processing
and general-purpose programming. By comprehending these fundamental
ideas in Python and MATLAB, readers will acquire a deep knowledge of
the concept.

Chapter 4: Control Flow and Structures in MATLAB and Python- The
fundamental ideas of control flow and structures in MATLAB and Python,
two popular programming languages in data analysis, engineering, and
scientific computing, will be covered in this chapter. Readers who
understand control flow will be able to write more effective programs that
can repeat tasks and make judgments under certain circumstances.

This chapter 1s organized into three primary sections, the first two of which
concentrate on the Python and MATLAB languages, respectively, while the
third portion deals with popular instances of each. You will study loops and
conditional expressions in the MATLAB portion. You may examine related
ideas in the Python portion, but with some syntactic variations. Python
implements decision-making logic via conditional expressions.

Chapter 5: Functions and Scripts in MATLAB and Python- You will
learn how to create and utilize functions and scripts in MATLAB and
Python, two robust programming languages that are frequently used in data
analysis and scientific computing, in this chapter. You will discover how to
use the function keyword in MATLAB to define reusable functions in
distinct files, enabling modular and well-structured code. MATLAB scripts,
which are collections of commands that are executed one after the other and
are perfect for automating repetitive activities, are also covered in this
chapter. You will also find anonymous functions made with the @ symbol,
which offers a rapid method of defining basic, one-line functions without
requiring a separate file. The def keyword will be used to define functions
in the Python section, allowing for organized and reusable code blocks.
Additionally, you will study lambda functions, which are concise and
anonymous.

Chapter 6: Data Handling in MATLAB- In order to assist users in
managing data for analysis, calculation, and visualization, this chapter
provides a thorough overview of MATLAB's data handling features. Text
files, spreadsheets, and binary files are just a few of the many sources of
data that may be read and written using the powerful array of tools that
MATLAB offers. Additionally, it allows import/export procedures for
picture and audio files as well as formats like .csv, .xls, and .mat. Anyone
working with experimental measurements, simulation findings, or system
inputs and outputs has to understand these procedures. Beginning with basic
I/O methods like fopen, fprintf, and fread, this chapter progresses to high-
level functions like readtable and writetable that are utilized for tabular
data. Additionally, it offers information on best practices, data cleaning
methods, and real-world use cases.

Chapter 7: Data Handling in MATLAB and Python- You will study
fundamental Python file handling strategies in this chapter, with an
emphasis on using built-in functions like open, read, write, and close to

carry out file operations. Data persistence and manipulation are made
possible by these functions, which make it possible to read from and write
to files efficiently. This chapter also explores working with common data
types, including CSV and JSON. The CSV module in Python will teach
readers how to read from and write to CSV files, which are frequently used
to store tabular data. To manage JSON files, a popular format for data
transmission, the json module will be presented. You will have the ability to
handle files and process data in a variety of formats at the end of this
chapter.

Chapter 8: Plotting and Visualization in MATLAB- This chapter aims to
give readers the hands-on skills they need to design and modify different
kinds of plots in MATLAB for practical uses. You may efficiently visualize
data by mastering fundamental 2D charting functions like plot, bar, and
scatter. In order to improve plot clarity and presentation, this chapter
discusses customization approaches, such as adding titles, labels, and
legends, and changing line styles. Additionally, you will learn how to
display complex data in three dimensions by utilizing functions like plot3,
surf, and mesh in 3D plotting. The chapter concludes by introducing
specialized plots like polar plots, heatmaps, and histograms, which expand
your capacity to evaluate and present data in a variety of fields, including
science, engineering, finance, and data analytics.

Chapter 9: Plotting and Visualization in Python- In this chapter,
MATLAB's plotting features are systematically compared with a thorough
tutorial on data visualization approaches in Python. Beginning with an
overview of Python's visualization ecosystem and its major libraries—
Matplotlib for simple plotting, Seaborn for statistical graphics, and Plotly
for interactive visualizations—the content is organized to guide users from
fundamental ideas to sophisticated applications. After that, this chapter
moves on to more fundamental charting methods, showing how to make
and modify a variety of chart types, such as line plots, bar charts, scatter
plots, and histograms. Advanced modification options to improve plot
clarity and visual appeal are covered in detail in a separate section. A
significant part of this chapter is the comparison analysis, in which we will
compare how Python and MATLAB implement visualization tasks side by
side.

Chapter 10: Working with Data in MATLAB and Python- With an
emphasis on practical applications, this chapter aims to give readers the
fundamental knowledge and abilities they need to handle, analyze, and
preprocess data in MATLAB and Python. Readers will discover how to
effectively index, slice, and reshape datasets by investigating data
manipulation techniques. These abilities are essential for jobs like
processing financial records or cleaning sensor data in engineering.
Additionally, statistical functions are covered in the chapter, allowing users
to calculate metrics like mean, standard deviation, and correlation—all of
which are essential in domains like market trend analysis and biological
research (e.g., evaluating data from clinical trials).

Chapter 11: Signal and Image Processing in MATLAB and Python- In
this chapter, methods for image and signal processing in MATLAB and
Python environments are examined. MATLAB and Python are important in
domains like computer vision, audio analysis, and telecommunications
because they offer powerful tools and frameworks for processing signals
and images. A comparative analysis of MATLAB and Python programs
with examples, MATLAB-based material with examples, and Python-based
content with examples comprise this chapter.

Chapter 12: Case Studies in MATLAB and Python- This chapter aims to
present practical, real-world case studies that demonstrate how MATLAB
and Python can be applied to solve complex problems across various
domains, including engineering, finance, signal processing, and data
science. Through interactive, hands-on examples, readers will learn to
perform numerical computations, data analysis, and visualization in both
programming environments. The chapter is designed to build problem-
solving capabilities by walking through industry-relevant scenarios such as
signal filtering, image processing, financial forecasting, and statistical
evaluation. By engaging with these examples, readers will enhance their
ability to convert theoretical knowledge into working code, streamline
workflows, and make informed decisions when choosing between
MATLAB and Python for specific applications. The chapter also highlights
best practices in algorithm design, debugging strategies, and performance
assessment, empowering readers with the skills needed to effectively
address real-world challenges.

Code Bundle and Coloured Images

Please follow the link to download the
Code Bundle and the Coloured Images of the book:

https://rebrand.ly/4alc95

The code bundle for the book is also hosted on GitHub at
https://github.com/bpbpublications/Practical-MATLAB-and-Python. In
case there’s an update to the code, it will be updated on the existing GitHub
repository.

We have code bundles from our rich catalogue of books and videos
available at https://github.com/bpbpublications. Check them out!

Errata
We take immense pride in our work at BPB Publications and follow best
practices to ensure the accuracy of our content to provide with an indulging
reading experience to our subscribers. Our readers are our mirrors, and we
use their inputs to reflect and improve upon human errors, if any, that may
have occurred during the publishing processes involved. To let us maintain
the quality and help us reach out to any readers who might be having
difficulties due to any unforeseen errors, please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB
Publications’ Family.

At www.bpbonline.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on BPB books and eBooks.
You can check our social media handles below:

https://rebrand.ly/4a1c95
https://github.com/bpbpublications/Practical-MATLAB-and-Python
https://github.com/bpbpublications
mailto:errata@bpbonline.com
https://www.bpbonline.com/

Instagram Facebook Linkedin

Get in touch with us at: business@bpbonline.com for more details.

Piracy

If you come across any illegal copies of our works in any form on the internet, we would be
grateful if you would provide us with the location address or website name. Please contact us at
business@bpbonline.com with a link to the material.

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are interested in either writing or
contributing to a book, please visit www.bpbonline.com. We have worked with thousands of
developers and tech professionals, just like you, to help them share their insights with the global
tech community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on the site
that you purchased it from? Potential readers can then see and use your unbiased opinion to make
purchase decisions. We at BPB can understand what you think about our products, and our
authors can see your feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

Join our Discord space

Join our Discord workspace for latest updates, offers, tech happenings
around the world, new releases, and sessions with the authors:

https://discord.bpbonline.com

mailto:business@bpbonline.com
mailto:business@bpbonline.com
https://www.bpbonline.com/
https://www.bpbonline.com/
https://discord.bpbonline.com/

Table of Contents

1. Introduction to MATLAB and Python
Introduction
Structure
Objectives
1.1 MATLAB
1.1.1 MATLAB environment
1.1.2 Basic syntax and operations
Arithmetic operations
Functions and scripts
1.2 Python
1.2.1 Setting up the environment
1.2.2 Basic syntax and operations
Variables and data types
Arithmetic operations
Lists, tuples, and dictionaries
Functions
NumPy for numerical computing
1.3 Comparison between MATLAB and Python
Conclusion

Exercises

2. MATLAB and Python Variables and Data Types
Introduction

Structure

Objectives

2.1 MATLAB
2.1.1 Defining variables in MATLAB
2.1.2 Creating variables
2.1.3 Displaying variables
2.1.4 Data types in MATLAB
2.1.5 Arrays and matrices
Matrix operations
2.1.6 Strings
String operations
2.1.7 Cell arrays
2.1.8 Structures

2.2 Python
2.2.1 Defining variables in Python
2.2.2 Data types in Python
2.2.3 Integers
2.2.4 Arithmetic operations
2.2.5 Strings
Common string methods
Escape characters
2.2.6 Lists
2.2.7 Use cases and importance in data handling
Creating lists
Accessing list elements
Modifying lists
List operations
Types of lists (2D lists)
2.2.8 Matrix representation and basic operations
2.2.9 Tuples
Creating tuples
Accessing tuple elements

Tuple operations

Tuple methods and built-in functions
2.2.10 Dictionaries

Creating dictionaries

Accessing and modifying dictionary elements

Dictionary methods and functions

Working with nested dictionaries
2.2.11 Sets

Creating sets

Accessing and modifying set elements

Set operations

Set methods

2.3 Comparison of examples via MATLAB and Python
Conclusion

Exercises

3. Basic Operations in MATLAB and Python Languages
Introduction
Structure
Objectives

3.1 MATLAB
3.1.1 Arithmetic operations in MATLAB
3.1.2 Matrix operations in MATLAB
3.1.3 Logical operations in MATLAB

3.2 Python
3.2.1 Arithmetic operations in Python
3.2.2 String manipulation in Python
3.2.3 List operations in Python
3.2.4 Basic built-in functions in Python
3.3 Comparison of examples via MATLAB and Python

Conclusion

Exercises

4. Control Flow and Structures in MATLAB and Python
Introduction
Structure
Objectives

4.1. Control flow in MATLAB
4.1.1 Conditional statements in MATLAB
4.1.2 Loops in MATLAB
For loop

While Loop

4.2. Control flow in Python
4.2.1 Conditional statements in Python
4.2.2 Loops in Python
For loop
While Loop

4.3. Common examples in MATLAB and Python
Conclusion

Exercises

5. Functions and Scripts in MATLAB and Python
Introduction
Structure
Objectives

5.1 Functions and scripts in MATLAB
5.1.1 Functions
5.1.2 Creating functions in MATLAB
5.1.3 Function with multiple outputs
5.1.4 Inline functions
5.1.5 Short note on scripts in MATLAB
Referencing a script inside another script

5.2 Functions and scripts in Python
5.2.1 Understanding functions
5.2.2 Functions with return values
5.2.3 Scope of variables in functions
Understanding variable scope in Python
Python using scope
Python managing scope
5.2.4 Recursive functions
Recursion using the call stack LIFO
5.2.5 Lambda functions and anonymous functions
5.2.6 Writing Python scripts

5.3 Comparative study in MATLAB and Python
Conclusion

Exercises
MATLAB
Python
Common practice questions in MATLAB and Python

6. Data Handling in MATLAB
Introduction
Structure
Objectives
6.1 Introduction to data handling in MATLAB
6.2 Reading from and writing to files

6.2.1 Basic file operations
6.2.2 Working with binary files

6.3 Importing and exporting data
6.3.1 Using readtable and writetable
6.3.2 Working with .mat files
6.3.3 Importing Excel files
6.3.4 Importing text and delimited files

6.4 Handling different data formats
6.4.1 Supported formats
6.4.2 Using the file import tool
6.4.3 Data cleaning after import

Conclusion

Exercises

7. Data Handling in MATLAB and Python
Introduction
Structure
Objectives
7.1 File handling and data formats in Python
7.1.1 File handling in Python
7.1.2 Working with CSV files
Using pandas for CSV handling
7.1.3 Working with JSON files
7.1.4 Working with other data formats
7.1.5 Practical examples and use cases

7.2 Comparative study of MATLAB and Python via examples

Conclusion

Exercises
Basic file operations
Working with different file modes
Reading and writing CSV files
Reading and writing JSON files
Handling binary files
Advanced file handling operations

8. Plotting and Visualization in MATLAB
Introduction

Structure

Objectives

8.1 plot function as foundation of MATLAB visualization

8.2 Bar function and visualizing categorical data

8.3 Exploring variable relationship through the scatter function

8.4 Customization of plots in MATLAB
8.4.1 Using titles to give context to plot
8.4.2 Using labels to identify axes
8.4.3 Using legends for multiple data series
8.4.4 Using line styles to enhance plot readability
8.4.5 A customized plot
8.4.6 Additional customization tips

8.5 Introduction to 3D plotting

8.6 Specialized plots in MATLAB
8.6.1 Using histograms to visualize data distributions
8.6.2 Using heatmaps to visualize matrix data
8.6.3 Using polar plots to visualize angular data
8.6.4 Error bar plots and representing variability
8.6.5 Stacked bar plots and comparing grouped data
8.6.6 Pie charts and proportional data visualization
8.6.7 Stem plots and visualizing discrete data
8.6.8 Contour plots and level curves
8.6.9 Box plots and statistical distribution
8.6.10 Logarithmic plots and visualizing exponential data
8.6.11 Quiver plots and visualizing vector fields
8.6.12 Waterfall plots and sequential surface representation
8.6.13 Filled contour plots and enhanced contours
8.6.14 Surface plot with contours
8.6.15 Stair plot in MATLAB

Conclusion

Exercises

9. Plotting and Visualization in Python
Introduction
Structure
Objectives

9.1 Data visualization and libraries in Python
9.1.1 Importance of data visualization
9.1.2 Libraries for data visualization in Python
9.1.3 Matplotlib as the foundational library
9.1.4 Seaborn and statistical data visualization
9.1.5 Plotly and interactive visualizations

9.2 Basic plotting in Python with Matplotlib
9.2.1 Introduction to Matplotlib
9.3 Customizing plots in Python
9.3.1 Specialized plots in Python
9.3.2 Introduction to specialized plots
9.3.2.1 Histograms for visualizing distributions
9.3.2.2 Heatmaps for visualizing matrix relationships
9.3.2.3 Polar plots using visualizing angular data
9.4 Comparison of examples via MATLAB and Python
Conclusion

Exercises

10. Working with Data in MATLAB and Python
Introduction
Structure
Objectives

10.1 MATLAB-based concepts
10.1.1 Data manipulation in MATLAB
10.1.2 Statistical functions in MATLAB
10.1.3 Tables in MATLAB

10.2 Python-based concepts
10.2.1 Data manipulation with Pandas and NumPy
10.2.2 Statistical analysis in Python

10.3 Comparative study via MATLAB and Python codes
10.3.1 Data manipulation
10.3.2 Statistical functions
10.3.3 Working with tables/DataFrames
10.3.4 Advanced topics
10.3.5 Visualization
10.3.6 Miscellaneous
10.3.7 Additional activities

Conclusion

Exercises
MATLAB
Python

11. Signal and Image Processing in MATLAB and Python
Introduction
Structure
Objectives

11.1 MATLAB-based content
11.1.1 Signal processing in MATLAB
11.1.2 Image processing in MATLAB
11.1.3 Advanced applications

11.2 Python-based content
11.2.1 Signal processing in Python
11.2.2 Image processing in Python
11.2.3 Advanced applications

11.3 Comparative study of MATLAB and Python codes
11.3.1 Signal processing examples
11.3.2 Image processing examples

11.3.3 Advanced applications
Conclusion

Exercises

12. Case Studies in MATLAB and Python
Introduction
Structure
Objectives
Chapter-wise exercises

Conclusion

Index

CHAPTER 1

Introduction to MATLAB and
Python

Introduction

In today’s data-driven world, computational tools play a crucial role in
scientific research, engineering, and data analysis. Two of the most widely
used programming environments for numerical computing and algorithm
development are Matrix Laboratory (MATLAB) and Python. While
MATLAB has long been a primary tool in engineering and academia due to
its powerful matrix operations and specialized toolboxes, Python has
emerged as a versatile, open-source alternative with extensive libraries for
scientific computing, machine learning, and automation. This chapter
provides a comprehensive introduction to both MATLAB and Python,
covering their core features, environments, and basic syntax.

Structure

This chapter contains the following topics:
 1.1.MATLAB
e 1.2 Python
e 1.3 Comparison between MATLAB and Python

Objectives

By the end of this chapter, you will understand the key differences and
strengths of MATLAB and Python and learn how to set up and navigate
their respective programming environments.

You will also gain familiarity with fundamental operations, data structures,
and functions in both languages and be prepared to apply these tools in
mathematical modeling, data analysis, and algorithm development.

Whether you are an engineer, scientist, or programmer, mastering these
languages will enhance your ability to solve complex computational
problems efficiently.

1.1 MATLAB

Matrix Laboratory (MATLAB) is a high-performance numerical
computing environment developed by MathWorks. It provides an
interactive platform for algorithm development, data visualization, data
analysis, and numerical computation. MATLAB is widely used in academia
and industries such as engineering, physics, finance, and bioinformatics due
to its powerful toolboxes and ease of use.
Some key features of MATLAB are:

e Matrix-based computing: Optimized for vector and matrix operations.

e Rich library of functions: Built-in mathematical, statistical, and
engineering functions.

e Toolboxes: Specialized add-ons for signal processing, control systems,
deep learning, and more.

e Interactive graphics: High-quality 2D/3D plotting and visualization
tools.

* Integration capabilities: Supports interfacing with C/C++, Java,
Python, and Fortran.

1.1.1 MATLAB environment
When you launch MATLAB, you interact with the following key

components:

e Command Window: The Command Window in MATLAB is the
primary interface where users can execute commands, perform
calculations, and interact with the MATLAB environment in real time.
It functions like an interactive shell, allowing users to enter expressions
and immediately see the output. This is particularly useful for quick
computations, debugging, and testing small code snippets without
creating a script or function file. The Command Window also displays
error messages, warnings, and outputs from scripts or functions. It
supports command history, so previous commands can be accessed and
reused easily. Overall, the Command Window is an essential
component of MATLAB’s workflow, enabling rapid experimentation
and immediate feedback during numerical computations and
programming.

o Itis used to enter commands and execute scripts.
o Example: Typing 5 + 3 and pressing Enter displays ans = 8.

e Workspace: The Workspace in MATLAB is a dynamic area that
displays all the variables currently in memory during a MATLAB
session. It provides a convenient way to view, inspect, and manage
variables, including their names, sizes, types, and values. Users can
interact with the Workspace through the graphical interface or
programmatically using commands like who, whos, and clear. This
feature is especially useful for monitoring data during computation,
debugging, and understanding how variables change over time. The
Workspace complements the Command Window by allowing users to
keep track of their data and results visually, making it an integral part
of MATLAB's environment for efficient data handling and analysis.

o It lists all variables currently stored in memory.
o It shows variable names, values, and data types.

e Current Folder: The Current Folder panel in MATLAB displays the
contents of the directory (folder) that MATLAB is currently accessing.

It allows users to easily navigate the file system, open files, run scripts,
and manage data files directly within the MATLAB environment. The

Current Folder is important because MATLAB only has direct access to
files located in this directory or on its path. Users can change the
current folder using the navigation bar or commands like cd. Having
quick access to project files, scripts, functions, and data sets makes the
Current Folder panel a vital part of the MATLAB workflow, enhancing
productivity and file organization.

o [t displays files and scripts in the working directory.
o MATLAB executes files from this location.

Editor: The Editor in MATLAB is a built-in text editor designed
specifically for writing, editing, and debugging scripts, functions, and
other code files. It offers features such as syntax highlighting,
automatic indentation, code folding, and error checking, which help
streamline the coding process. The Editor also provides tools for
setting breakpoints, running sections of code, and stepping through
code during debugging. Unlike the Command Window, which is used
for executing individual commands interactively, the Editor is ideal for
writing longer and more structured programs that can be saved and
reused. It supports multiple tabs and integration with version control
systems, making it a powerful tool for developing and maintaining
complex MATLAB applications.

o [Itis used to write, debug, and save MATLAB scripts (. m files).
o It supports syntax highlighting and automatic indentation.

Toolboxes: Toolboxes in MATLAB are specialized collections of
functions, classes, and Simulink blocks that extend MATLAB’s core
capabilities to specific application areas. Each toolbox is designed to
support tasks in a particular domain, such as signal processing, image
processing, machine learning, control systems, optimization, and more.
These toolboxes are developed and maintained by MathWorks and
provide professionally developed algorithms, ready-to-use functions,
and extensive documentation and examples. Toolboxes make it easier
for users to perform complex operations without having to build
everything from scratch. Since they are modular, users can install only
the toolboxes relevant to their work, making MATLAB a flexible and

scalable environment for both academic and industrial applications.

o Extend MATLAB’s functionality (e.g., Image Processing Toolbox,
Simulink).

Different types of toolboxes can be explored at the following link:
https://www.mathworks.com/products.html

1.1.2 Basic syntax and operations

Variables and data types: In MATLAB, variables are used to store data
values, and they are created automatically when a value is assigned using
the equal sign (=). MATLAB is designed for matrix and numerical
computation, so all variables are, by default, stored as matrices or arrays,
even if they contain a single number. MATLAB is dynamically typed,
meaning that you do not need to declare a variable’s type before using it.
Common data types in MATLAB include numeric types (double, single,
int8, int16, ctc.), character arrays and strings (char, string), logicals
(true, false), cell arrays, structures (struct), and tables. MATLAB’s
powerful handling of arrays and data types allows users to perform complex
mathematical and data manipulation tasks with simple and concise syntax.
Understanding variables and data types is essential for writing efficient and
error-free MATLAB programs. MATLAB is dynamically typed (no explicit
declaration needed).
Some common data types are as follows:

e Numeric: double, int8, single

e Logical: true/false

e Character: 'Hello'

e Cell arrays: {1, 'text', [3 4]}
Example 1.1: [Numeric (Default double)]:

a = 5.25; % 'a' 1is stored as a double by
default
class(a) % Returns: 'double'

Example 1.2: [Integer data types (int8, int16, etc.)]
b = int8(127); % Assign an 8-bit signed integer

https://www.mathworks.com/products.html

class(b) % Returns: 'int8'
Example 1.3: [Single precision floating point]:
c = single(3.14); % Converts to single precision

class(c) % Returns: 'single'
Example 1.4: [Logical values (true/false)]:

d = true; % Logical variable

e = (5> 10); % Evaluates to false
class(e) % Returns: 'logical'

Example 1.5: [Character array (String using single quotes)]:
greeting = 'Hello, MATLAB'; % Character array

class(greeting) % Returns: 'char'
Example 1.6: String data type (introduced in newer MATLAB versions):
name = "Quantum"; % String scalar
class(name) % Returns: 'string'

Example 1.7: Cell array with mixed data types:

myCell = {1, 'MATLAB', [2 3 4]}; % Cell array
containing number, string, and array

class(myCell) % Returns: 'cell'
Example 1.8: Accessing elements of a cell array:

element = myCell{2}; % Accesses 'MATLAB'
class(element) % Returns: 'char'

Example 1.9: Creating logical array from condition:

A =11, 2, 3, 4, 5];

logicalA = A > 3; % Returns [0 0 0 1 1]
class(logicalA) % Returns: 'logical'

Example 1.10: Combining types in a structure:
student.name = 'Alice’;
student.age = int8(22);
student.passed = true;
student.grades [85, 90, 78];

% Use 'class' function on a field

class(student.age) % Returns: 'int8'

Example 1.11: MATLAB’s array structures for row vectors, column
vectors, and matrices:

= 10; Scalar

[1 2 3]; % Row vector

[1; 2; 3]; % Column vector

rand(3,3); % 3x3 random matrix

R

Q N T W
I}

Arithmetic operations

In MATLAB, arithmetic operations are fundamental and are performed
using standard operators such as addition (+), subtraction (-), multiplication
(*), division (/ for right division and \ for left division), element-wise
multiplication (.*), element-wise division (./, .\), and exponentiation (" for
matrix power and .~ for element-wise power), which are detailed in the
following table. MATLAB is inherently designed for matrix and vector
computations, so these operations can be applied to scalars, vectors,
matrices, and higher-dimensional arrays. Element-wise operators are
particularly important when performing operations on corresponding
elements of arrays. MATLAB follows standard operator precedence rules,
and parentheses can be used to change the order of evaluation. Mastery of
arithmetic operations in MATLAB is essential for performing calculations,
implementing algorithms, and developing simulations in engineering,
science, and applied mathematics.

Operation Syntax Example
Addition + 5+3->38
Subtraction - 7-2-5
Multiplication * 4 * 6 > 24
Division / 10/ 2-5
Exponentiation n 273 » 8

Table 1.1 : Basic arithmetic operations in MATLAB
Vectorized addition:

A = [11 2, 3];
B = [4, 5, 6];
C = A + B; % Element-wise addition » [5, 7, 9]

Matrix multiplication:

M1 = [1 2; 3 4];

M2 = [5; 6];

result = M1 * M2; % Matrix multiplication -» [17; 39]

Scalar division:

totalMarks = 450;

subjects = 5;

average = totalMarks / subjects; % = 90

Element-wise operations (for arrays):

A=1[12; 34];

B [5 6; 7 8];

C=A .*B; % Element-wise multiplication » [5 12; 21
32]

Functions and scripts

In MATLAB, both scripts and functions are types of program files that
contain sequences of MATLAB commands. While they may appear similar
at first instance, they serve distinct purposes and differ in terms of how they
handle input/output, variable scope, and reusability.

Functions

A function in MATLAB is a more structured and modular type of program
file that allows for input arguments and output results. Functions operate in
their own local workspace, which means variables inside the function do
not interfere with variables in the base workspace unless explicitly passed
in or out. This makes functions ideal for performing specific tasks
repeatedly or with varying data.

Characteristics of functions:
e [t is defined using the function keyword.
[t accepts input arguments and returns output values.

It has their own isolated variable workspace.

e [t supports modular, reusable programming practices.

Syntax:

function [outputl, output2,

input2, ...)

end

% Function body

Let us look at the following types of functions:

e Built-in functions: MATLAB provides a wide range of built-in
functions that simplify mathematical, statistical, and engineering
computations. These functions are optimized, pre-defined operations
that can be applied directly to scalars, vectors, matrices, and higher-
dimensional arrays. Whether you are performing basic arithmetic or
complex scientific analysis, built-in functions in MATLAB help
streamline your code and enhance performance. Functions like sin(),
cos(), and sqrt() are used for mathematical operations, while

.] = functionName(inputl,

mean() and max() are commonly used for data analysis:

o sin() — Sine of an angle (in radians):
angle = pi / 6;
radians
sineValue = sin(angle); %

&

o cos() — Cosine of an angle (in radians):

theta = pi / 3; %
radians
cosValue = cos(theta); %

o sqrt() — Square root calculation:
distance = 25;
rootValue = sqgrt(distance); %
o mean() — Average of an array:
scores = [88, 92, 79, 85, 90];
averageScore = mean(scores); %

o max() — Maximum element in an array:

30 degrees in

Returns 0.5

60 degrees in

Returns 0.5

Returns 5

Returns 86.8

temperatures = [22.5, 27.8, 25.1, 30.0, 28.4];
maxTemp = max(temperatures); % Returns 30.0
e User-defined functions:
function y = square(x)
y = xA2;
end
Scripts
A sequence of commands saved in .m files. A script is a simple program
file that contains a sequence of MATLAB commands. It operates in the base
workspace, meaning any variables created or modified in the script are
accessible after the script finishes running. Scripts are typically used for

performing a series of calculations, visualizations, or simulations where
data 1s already available in the workspace or defined within the script itself.

Characteristics of scripts:
e [t does not accept input or return output explicitly.
o [t shares the same workspace as the base MATLAB environment.
e [t is ideal for quick analysis or when working with existing data.
Key differences between scripts and functions in MATLAB:

Feature Script Function
Input arguments No Yes
Output arguments No Yes
Workspace Base workspace Local workspace
Reusability Limited High
Best used for Simple tasks, quick computations Modular, repeatable tasks

Table 1.2 : Main differences between scripts and functions in MATLAB
A function or a script in MATLAB can be used in the following ways:

e Use scripts when working interactively or when prototyping with
known data.

e Use functions when you need to encapsulate a task that might be
reused, or when you want to pass specific inputs and get well-defined
outputs.

Example 1.12: Steps to run a script in MATLAB:

1. Script name: circle_area.m
radius = 5;
area = pi * radius”2;
disp(['The area of the circle is: '
num2str(area)]);

2. How to run:
a. Save the file as circle_area.m in your MATLAB working directory.
b. In the Command Window, type:

circle_area

3. Output:

The area of the circle is: 78.54

1.2 Python

Python is a general-purpose, interpreted, high-level programming language
known for its simplicity and readability. It is widely used in:
» Scientific computing (NumPy, SciPy)
e Data analysis (Pandas)
e Machine learning (Scikit-learn, TensorFlow)
e Web development (Django, Flask)
Reasons to use Python:
e Easy-to-read syntax
» Extensive standard library
e Strong community support
e Cross-platform compatibility

1.2.1 Setting up the environment

Before exploring Python programming, it is essential to set up a proper
development environment to ensure smooth and efficient coding. A well-
configured environment helps manage packages, run scripts, debug code,

and visualize data with ease.

Setting up the Python environment typically involves installing Python
itself, choosing an appropriate code editor or integrated development
environment (IDE), and configuring tools like pip for package
management:

1.

Installing Python: To install Python, visit the official website
python.org and download the latest stable version compatible with
your operating system (Windows, macOS, or Linux). The installation
package includes the Python interpreter, the standard library, and an
IDE. During installation on Windows, make sure to check the box
“Add Python to PATH” to enable command-line access.
Alternatively, many users prefer installing Anaconda (it is space-heavy
and requires several gigabytes of disk space), a popular distribution
that bundles Python with essential scientific libraries (like NumPy,
pandas, and Matplotlib) and tools such as Jupyter Notebook. This
method is especially recommended for data science, machine learning,
and academic applications.

a. Download from python.org.

b. Verify installation:
python --version # Checks installed version

2. Choosing an IDE/editor: Choosing the right IDE or code editor is

essential for enhancing productivity, debugging efficiency, and ease of
coding in Python. The following are commonly used IDEs and editors,
along with their features and recommended use cases:

* Integrated development and learning environment (IDLE): IDLE
is Python’s default lightweight IDE that comes bundled with the
standard Python installation. It provides a simple interface with a
built-in shell, editor, and debugger, making it ideal for beginners to
write, test, and run Python code easily.

Characteristics:

o It comes bundled with a standard Python installation.
o It is simple and lightweight.
o It includes a shell and basic text editor with syntax highlighting.

https://python.org/
https://python.org/

When to use: It is ideal for beginners and small scripts. Great for
quick testing or learning Python basics.

o Jupyter Notebook: Jupyter Notebook is an open-source, web-based
interactive environment that allows users to write and execute
Python code alongside rich text elements like equations,
visualizations, and markdown. It is widely used in data science,
machine learning, and academic research for creating reproducible
and well-documented workflows.

Characteristics:

o It is web-based interface for writing live code, visualizations,
and narrative text (Markdown).

o It 1s excellent support for data science workflows and interactive
analysis.

o It is popular to share reproducible research and teaching.

When to use: It is best for data analysis, machine learning,
academic work, and prototyping.

e PyCharm: PyCharm is a powerful, full-featured Python IDE
developed by JetBrains, designed for professional software
development. It offers intelligent code completion, debugging tools,
version control integration, and support for web frameworks and
scientific libraries, making it ideal for large-scale and complex
Python projects. PyCharm is especially useful for debugging large
programs and offers advanced features and solutions that are not
mainly found in free, open-source IDEs.

Characteristics:
o It is a full-featured IDE by JetBrains (Community and
Professional editions).
o It offers intelligent code completion, debugging tools, version
control, and virtual environment integration.
When to wuse: It is ideal for large-scale projects, software
development, and professional Python programming.

e Visual Studio Code (VS Code): It is a lightweight, open-source
code editor developed by Microsoft that supports multiple

programming languages, including Python. With its rich ecosystem
of extensions (like the Python extension), integrated terminal, and
debugging tools, VS Code is highly customizable and suitable for
both beginners and experienced developers.

Characteristics:

o Itis a lightweight yet powerful open-source editor by Microsoft.
o It is extensible with plugins (Python, Jupyter, Git, etc.).
o [t is an integrated terminal and supports for debugging.

When to use: It is great for both beginners and advanced users who
want a customizable environment for general-purpose programming.

e Scientific Python Development Environment (Spyder): Spyder is
an open-source IDE designed specifically for scientific computing
and data analysis in Python. It features a MATLAB-like interface
with an integrated editor, console, variable explorer, and plotting
tools, making it ideal for researchers, engineers, and scientists
working on numerical and analytical tasks.

Characteristics:

o It is tailored for scientific computing and data analysis.

o It resembles MATLAB in layout (editor, variable explorer, plot
viewer).

o It is often included in the Anaconda distribution.

When to use: It is preferred in academic and research settings
involving numerical and scientific computations.

e Thonny: Thonny is a beginner-friendly Python IDE designed for
teaching and learning programming. It features a simple interface,
built-in debugger, and easy-to-understand variable visualization,
making it ideal for students and those new to Python.

Characteristics:

o It is a beginner-friendly IDE with a simple Ul and step-by-step
debugging.
o [t is designed specifically for educational purposes.

When to use: It is excellent for students and first-time programmers
learning Python.

e Atom and Sublime Text: Atom and Sublime Text are lightweight,
fast, and highly customizable text editors that support Python
programming through community-supported plugins. While Atom is
open-source and known for its collaborative features, Sublime Text
is valued for its speed and elegant user interface. Both are ideal for
quick scripting, editing, and general-purpose development.

Characteristics:

o It is a lightweight text editor with Python support via plugins.
o It is fast and customizable, with basic features for coding.

When to use: It is useful for quick edits, scripting, or when working on
minimal setups.

A summary of their features is shown in the following table:

IDE/Editor Best for
IDLE Beginners, quick testing
Jupyter Data science, prototyping, teaching
PyCharm Large-scale software development
VS Code Customizable coding across projects
Spyder Scientific and numerical computing
Thonny Learning and teaching Python
Atom/Sublime Lightweight scripting, general-purpose use

Table 1.3: Details of IDE/editor in Python and best usage

3. Package management with pip: pip is the standard package manager
for Python and is used to install, upgrade, and manage external Python
libraries that are not part of the standard library. The name pip stands
for Pip Installs Packages or Pip Installs Python, and it allows users to
easily access a vast ecosystem of third-party tools and libraries hosted
on the Python Package Index (PyPI).

Key features of pip:

e [t allows the installation of packages from PyPlI and other
repositories.

[t supports version control (installing specific versions).
[t enables easy uninstallation and upgrading of packages.

e [t works seamlessly with virtual environments for isolated project
dependencies.

Some basic pip commands are as follows:

1. Install a package: pip install numpy

2. Install a specific version: pip install pandas==1.5.3

3. Upgrade a package: pip install --upgrade matplotlib
4. Uninstall a package: pip uninstall scipy

5. List installed packages: pip list

1.2.2 Basic syntax and operations

Python 1s known for its clean, readable syntax that closely resembles the
English language, making it an excellent choice for beginners. Indentation
is a key feature in Python, used to define blocks of code instead of curly
braces as in many other languages. Basic operations in Python include
arithmetic operations like addition (+), subtraction (-), multiplication (*),
division (/), and modulus (%). Variables are dynamically typed, meaning
you do not need to declare their data type explicitly. Python also supports
string manipulation, list operations, and logical expressions with ease. This
simplicity and flexibility make Python a powerful tool for a wide range of
programming tasks.

Variables and data types

In Python, variables are used to store data that can be referenced and
manipulated throughout a program. A variable is essentially a named
location in memory that holds a value, and it is created the moment a value
is assigned to it using the assignment operator (=). Python is dynamically
typed, which means you do not need to declare the type of a variable
explicitly—the interpreter automatically infers it based on the assigned
value.

Data types in Python define the kind of value a variable can hold, and they
are broadly categorized into built-in types such as numeric types (int,
float, complex), sequence types (str, 1list, tuple), mapping types
(dict), set types (set, frozenset), Boolean type (bool), and others like
NoneType. Understanding how variables and data types work is
fundamental in Python, as they influence how data is stored, accessed, and
manipulated within a program.

Python supports dynamic typing:
x = 10 # Integer
y = 3.14 # Float

name = "Python" # String
is_true = True # Boolean

Arithmetic operations

Arithmetic operations in Python allow you to perform basic mathematical
calculations using operators. Python supports a range of arithmetic
operators, such as addition (+), subtraction (-), multiplication (*), division
(/), floor division (//), modulus (%), and exponentiation (**). These
operators can be used with numeric data types like integers and floats. For
example, 5 + 3 will yield 8, while 10 / 4 will return 2.5, and 10 // 4 will
return 2 (discarding the decimal part). Python follows standard
mathematical precedence rules (also known as PEMDAS) to evaluate
expressions. The following operations form the basis of most computations
in Python and are widely used in everything from simple scripts to complex
data processing and scientific computing:

Operation Syntax Example
Addition + 5+3=28
Subtraction - 7-2=25
Multiplication * 4 * 6 =24
Division / 10 / 3 = 3.333
Exponentiation *k 2%*3 = 8

Table 1.4: Arithmetic operations in Python

Lists, tuples, and dictionaries

In Python, lists, tuples, and dictionaries are fundamental data structures
used to store collections of data.

A list 1s an ordered, mutable (changeable) collection of items, defined using
square brackets [], and can hold elements of different data types. For
example, my_list = [1, "apple", 3.14] isa valid list.

A tuple 1s similar to a list but is immutable, meaning its elements cannot be
changed after creation. Tuples are defined using parentheses (), such as
my_tuple = (1, "banana", 2.71).

Dictionaries, on the other hand, are unordered collections of key-value
pairs, defined using curly braces {}. Each value in a dictionary is accessed
via 1its corresponding key, for example: my_dict = {"name":
"Alice", "age": 25}.

Lists and tuples are typically used for storing sequences of data, while
dictionaries are ideal for representing relationships or structured data with
labels. These structures are essential for data organization and manipulation
in Python programming:

my list = [1, 2, 3] # Mutable

my tuple = (1, 2, 3) # Immutable

my dict = {"a": 1, "b": 2} # Key-value pairs

Functions

In Python, functions are reusable blocks of code that perform a specific task
when called. They help in organizing code into modular, manageable
pieces, improving readability, and reducing redundancy. Functions are
defined using the def keyword followed by the function name and
parentheses, which may include parameters. For example, def
greet(name): defines a function that takes one parameter. The code inside
the function is indented and runs only when the function is called.
Functions can return values using the return statement or perform actions
without returning anything. Python also supports built-in functions (like
len(), sum(), print()), as well as user-defined functions. Additionally,
advanced features such as default arguments, keyword arguments, variable-

length arguments (*args, **kwargs), and 1lambda (anonymous) functions
enhance their flexibility. Functions are central to write clean, efficient, and
maintainable Python code:

def greet(name):
return f"Hello, {name}!"
print(greet("Alice")) # Output: Hello, Alice!

NumPy for numerical computing

Numerical Python (NumPy) is a powerful open-source library in Python
that is essential for numerical computing and data analysis. It provides
support for large, multi-dimensional arrays and matrices, along with a
collection of mathematical functions to operate on them efficiently. Unlike
regular Python lists, NumPy arrays (ndarray) are more compact, faster,
and support vectorized operations, which means operations can be applied
on entire arrays without explicit loops. NumPy also includes tools for linear
algebra, Fourier transforms, random number generation, and integration
with C/C++ code. Due to its performance and versatility, NumPy i1s a
foundational package in the scientific Python ecosystem and is widely used
in data science, machine learning, and engineering applications:

import numpy as np
A = np.array([1, 2, 3]) # Creates a NumPy array

B = np.array([[l, 2]) [3: 4]])
print(B * 2) # Element-wise multiplication

1.3 Comparison between MATLAB and Python

MATLAB and Python are both widely used programming languages in
scientific computing, engineering, and data analysis, but they differ
significantly in terms of structure, usage, and community support.
MATLAB is a proprietary language developed by MathWorks, specifically
designed for matrix operations, numerical analysis, and visualization. It
offers an IDE with built-in toolboxes tailored for fields such as control
systems, signal processing, and computational mechanics. Its syntax is
simple for mathematical modeling, making it particularly user-friendly for

engineers and domain experts. On the other hand, Python is an open-source,
general-purpose programming language that has gained immense popularity
due to its readability, versatility, and rich ecosystem of libraries like
NumPy, SciPy, Pandas, Matplotlib, and TensorFlow.

Unlike MATLAB, Python is not limited to numerical computing and can be
used for web development, automation, machine learning, and more. While
MATLAB excels in tool integration and GUI-based applications, Python
offers more flexibility, a larger community, and cost-effectiveness since it is
free and open-source. Ultimately, the choice between MATLAB and Python
depends on specific project needs, cost considerations, and the user's
familiarity with programming, as shown in the following table:

Feature MATLAB Python
Primary use Numerical computing, engineering | General-purpose, scientific computing
Syntax Matrix-oriented, proprietary Readable, open-source
Cost Paid (free for students) Free
Libraries Toolboxes (e.g., Signal Processing) | NumPy, SciPy, Pandas
Speed Fast for matrix operations Slower (unless using optimized libraries)
Community Strong in engineering Large open-source community

Table 1.5 : Basic comparison between MATLAB and Python
Let us look at some key takeaways:

e MATLAB is optimized for numerical simulations, control systems, and
signal processing, making it ideal for engineers and researchers.

e Python is a general-purpose language with strong scientific computing
support, widely used in Al, data analysis, and web development.

e Both languages have distinct advantages; MATLAB’s simplicity in
matrix operations vs. Python’s versatility and open-source nature.

Conclusion

This chapter introduced the foundational concepts of MATLAB and Python,
two powerful languages for numerical computing and algorithm

development. MATLAB excels in matrix-based computations and offers
specialized toolboxes for engineering applications, while Python provides a
flexible, open-source ecosystem with extensive libraries for data science,
machine learning, and automation.

By understanding the basics covered in this chapter, you are now ready to
explore more advanced topics and apply these tools to real-world problems.
Whether you choose MATLAB, Python, or both, these languages will serve
as essential tools in your computational toolkit. In the next chapter, we will
explore MATLAB and Python variables and data types.

Exercises

1.

11.

Write a MATLAB command to create a row vector of the first five
natural numbers.

. Use MATLAB to generate a 4X4 matrix of random numbers between 0

and 1.

. Describe the purpose of the MATLAB Command Window, Workspace,

and Editor with examples.

. Write a script in MATLAB to calculate the square root of each element

in a vector [4 9 16 25].

. Use MATLAB to create a 3X3 identity matrix. Explain what this

matrix represents.

. Perform matrix multiplication between two 2X2 matrices in MATLAB

and display the result.

. Explain how the MATLAB environment helps you debug a syntax

CITOL.

. Write a MATLAB command to plot the sine function for values from 0

to 27t.

. Use the mean() and max() functions to analyze a given vector of data.
10.

Describe how MATLAB handles variables and data types during
execution.

Write a MATLAB program that uses loops and conditional statements
to check for even numbers in an array.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

25.

Demonstrate how to use the MATLAB help command to learn about
the rand function.

Install Python and write a simple script that prints “Hello, Python
World!.

Explain the difference between a list and a tuple in Python with
examples.

Write Python code to calculate the square of numbers from 1 to 10
using a loop.

Create a Python dictionary that stores the names and marks of three
students, and print the student with the highest marks.

Describe the process of setting up Python using an IDE like PyCharm
or Jupyter Notebook.

Use Python to generate a list of even numbers from 1 to 20 using list
comprehension.

Write a Python function that takes two numbers as arguments and
returns their sum and product.

Demonstrate the use of import math in Python and calculate the cosine
of 45 degrees.

Write a program in Python that checks if a number entered by the user
1s positive, negative, or zero.

How does Python handle indentation? Write a code block that uses if-
else logic with proper indentation.

Use Python to convert a temperature from Celsius to Fahrenheit.
Compare how MATLAB and Python handle array indexing using a
small example.

Write Python code to read user input, convert it to an integer, and print
1ts square.

Join our Discord space

Join our Discord workspace for latest updates, offers, tech happenings
around the world, new releases, and sessions with the authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/

CHAPTER 2

MATLAB and Python Variables
and Data Types

Introduction

The present section provides a detailed discussion about the variables and
data types in MATLAB and Python, respectively. Several aspects are
discussed in this chapter, such as defining variables in MATLAB,
arrays/matrices in MATLAB, and strings/structures in MATLAB.
Regarding Python, various topics are introduced, like defining variables in
Python, data types in Python, string/list/tuple/dictionary/set in Python.
Moreover, a comparison between MATLAB and Python is also provided
via several examples. At the end of the chapter, an exercise is provided for
the readers to practice the learned concepts.

Structure

In this chapter, we will learn about the following topics:
2.1 MATLAB
e 2.2 Python
e 2.3 Comparison of examples via MATLAB and Python

Objectives

The main objective of this chapter is to create a proper understanding of
MATLAB and Python concepts among readers, so that on the basis of this
deep understanding, a comparative study between MATLAB and Python
problems can be tackled.

2.1 MATLAB

The basics of MATLAB are discussed in this section, along with the solved
examples. How to define the variables and deal with matrices, arrays, etc.,
1s also mentioned in this section.

2.1.1 Defining variables in MATLAB

In MATLAB, a variable is a symbolic name used to store data for
computation and analysis. One of MATLAB’s strengths is its dynamically
typed nature, meaning that you do not need to declare a variable’s type
explicitly before assigning a value to it. This allows for flexible and rapid
prototyping, especially in mathematical and engineering applications.

2.1.2 Creating variables

To define a variable in MATLAB, assign it a value using the equals sign
(=). For example, refer to the following Table 2.1 and Table 2.2:

radius = 5 Output
% Scalar variable radius =
numbers = [10 20 30 40] 5
% Vector numbers =
A=1[123;456; 7 8 9] 10 20 30 40
% Matrix A =
area = pi * radius”2 1 2 3
% Perform a calculation using 4 5 6
variables 7 8 9

area =

78.5398

Table 2.1 : Assigning different variables in MATLAB
|

X = 10 Output

% Assigns integer 10 to the variable x X =

y = 5.5 10

% Assigns floating-point number 5.5 to the variable y =

y 5.5000

z = 'Hello, MATLAB!' 7 =

% Assigns string to the variable z Hello, MATLAB!

Table 2.2 : Assigning variables in MATLAB

2.1.3 Displaying variables

You can view the contents of a variable by simply typing its name in the
Command Window or by using the disp function, as shown in the following
table:

X = 10; Output
% Assigns integer 10 to the variable x 10

y =5.5; 5.5000
% Assigns floating-point number 5.5 to the variable |Hello, MATLAB!

z = 'Hello, MATLAB!';
% Assigns string to the variable z

disp(x); % Displays value of x
disp(y); % Displays value of y
disp(z); % Displays value of z

Table 2.3 : Displaying variables in MATLAB
The variable naming rules are as follows:

e Variable names must start with a letter, followed by letters, digits, or
underscores.

e MATLAB is case-sensitive, so Var and var are different variables.

e Avoid using MATLAB function names (for example, sum, mean) as
variable names to prevent conflicts.

2.1.4 Data types in MATLAB

MATLAB provides various data types to handle different types of data
effectively. Some primary data types commonly used in MATLAB are as
follows:

e Numeric types: MATLAB supports multiple numeric data types,
including:

o Double precision (double): Default numeric type in MATLAB. It is
the default type for most calculations in MATLAB. Use when high
numerical accuracy is needed, such as in scientific computations,
simulations, and engineering models.

o Single precision (single): Uses less memory than double. It uses half
the memory of double. Ideal when working with large datasets, or
when performance/memory efficiency is more important than
precision, e.g., in real-time applications or GPU computations.

o Integer types (int8, int16, int32, int64): Stores integer values with
varying byte sizes. It is used for storing whole numbers with
minimal memory. It is often applied in image processing, data
acquisition, or embedded systems, where data size and precision are

controlled.
a = 10.5; % Double precision (default) Output
b = single(3.7); % Single precision a =
c = int16(10); % 16-bit integer 10.5000
b =
3.7000
C =
10

Table 2.4 : Datatypes in MATLAB

e Logical type: The logical data type in MATLAB represents Boolean
values true and false. Logical data is essential for conditions and
control statements:

X =5 Output
isPositive = (x > 9) X =
% Returns 1 if x is greater than @ 5
isNegative = (x < 0) isPositive =
% Returns @ if x is not less than © . 5 .
isNegative =
0

Table 2.5: Logical datatype in MATLAB

2.1.5 Arrays and matrices

Arrays and matrices are central to MATLAB’s data structure capabilities,
especially for scientific and engineering calculations. Different concepts are

discussed such as, 1D array, 2D array, matrix operations, etc.:

e 1D arrays (Vectors): A 1D array or vector in MATLAB is a list of
values. You can define row or column vectors, as shown in the

following table:
rowVector = [1, 2, 3, 4] Output
% Row vector rowVector =
columnVector = [1; 2; 3; 4] 1 2 3 4
columnVector =
% Column vector 1
2
3
a4

Table 2.6 : Row and column vector in MATLAB

e 2D arrays (Matrices): Matrices are 2D arrays and the fundamental
data structure in MATLAB. Let us look at how 2D arrays are defined
via the following:

A=11, 2, 3; 4, 5, 6; 7, 8, 9] Output
% 3x3 matrix A =
B=1[123;456; 7 89] 1 2 3
4 5 6
% Another way to define the same matrix 7 8 9
B =
1 2 3
4 5 6
7 8 9

Table 2.7: 2D array in MATLAB

Matrix operations

MATLAB includes various built-in operations for working with matrices,
which are as follows:

e Element-wise operations: Use the .* operator to multiply
corresponding elements.

e Matrix multiplication: Use * for matrix multiplication (following
linear algebra rules).

» Transpose: Use the apostrophe (') to transpose a matrix:

A=1[1, 2, 3; 4, 5, 6; 7, 8, 9]; Output

[2, 2, 3; 5, 5, 6; 7, 7, 8]; C=

= A * B 33 33 39
75 75 90
117 117 141

X N W

Matrix multiplication

D=A.*B D =
% Element-wise multiplication 2 4 9
Y 20 25 36
-] 49 56 72
% Transpose of matrix A AT =
1 4 7
2 5 8
3 6 9

Table 2.8 : Matrix operations in MATLAB

2.1.6 Strings

Strings are sequences of characters enclosed in single quotes (') or, in newer
MATLAB versions, double quotes ("). MATLAB supports both character
arrays and string arrays, although string arrays are more flexible for text
manipulation. The difference between the two is explained in the following
table:

If double quotes ("") are not working in your MATLAB, it is likely due to
your MATLAB version being older than R2016b, as support for the string
data type was introduced in MATLAB R2016b.

In older versions of MATLAB (before R2016b):
e Strings ("") are not supported.
e You must use character arrays (' ') to represent text.

Feature

Character array ('text')

String array ("'text')

Introduced in

Available in all versions

R2016b and later

Quote used Single quote '’ Double quote " "
Text manipulation Limited functionality More built-in methods
Recommended for new code Not preferred Yes, preferred from R2016b+

Table 2.9 : Difference between character array and string array

You can define a string or character array as follows:

charArray = 'Hello'
% Character array

Output

charArray =

| |He110
Table 2.10: String in MATLAB

String operations
MATLAB provides various functions for manipulating strings, which are as
follows:
e Concatenation: Use strcat to join strings.
e Search: Use strfind to find substrings within strings.
Comparison: Use strcmp or strcmpi (case-insensitive).

Replacement: Use strrep to replace parts of a string. Via the strrep
function, any specific part of string can be replaced.

strl = 'Hello'; Output

str2 = '"World'; strl =

str3 = strcat(strl, str2) Hello

% Concatenates strings S 3

. . . . World

index = strfind(str3, ‘'World") str3 =

% Finds "World" in str3 HelloWorld

newStr = strrep(str3, 'World', 'MATLAB') % index =

Replaces "World" with "MATLAB" 6
newStr =
HelloMATLAB

Table 2.11 : String operations in MATLAB

2.1.7 Cell arrays

Cell arrays are containers that allow you to store data of varying types and
sizes. Unlike standard arrays, cell arrays can hold strings, numbers,
matrices, and even other cell arrays, making them useful for complex data
sets.

To create a cell array, use curly braces {}:

c = {1, 2, 3; '"text', [4, 5], true} [Output
C =
[1] [2] [3]
"text' [1x2 double] [1]

Table 2.12: Cell arrays in MATLAB

You can access cell elements using curly braces {} for the content and
parentheses () for sub-cells:

c ={1, 2, 3; 'text', [4, 5], true} Output

val = C{1,2} val =

% Accesses the element in row 1, column 2 2

subCell = C(1,:) subCell =

% Accesses all elements in row 1 as a sub-cell [1] [2] [3]
array

Table 2.13 : Accessing cell element in MATLAB

2.1.8 Structures

Structures are another flexible data type in MATLAB. They store data in
fields, each of which can contain any type of data, including arrays, strings,
or other structures. Structures are particularly useful for organizing related
data in a meaningful way.

Creating structures: Define a structure by specifying field names and
assigning values:

student.name = 'John Doe' Output
student.age = 21 student =
student.scores = [95, 88, 92] name: 'John Doe'
student =
name: 'John Doe'
age: 21
student =
name: 'John Doe'
age: 21

scores: [95 88 92]

Table 2.14 : Structure in MATLAB

Accessing and modifying structure fields: Use the dot notation (.) to
access fields:

name = student.name Output

% Accesses the 'name' field name =

student.age = 22 John Doe

% Updates the 'age' field student =
name: 'John Doe'
age: 22

| | scores: [95 88 92]

Table 2.15 : Accessing and modifying structure fields in MATLAB

Nested structures and arrays of structures: Structures can contain other
structures, allowing nested data organization. MATLAB also supports
arrays of structures for organizing multiple similar entities:

class(1).student ‘Alice'’ Output
class(2).student 'Bob’ class =
class(1).grade = 85 student: 'Alice’

class(2).grade = 90 HEES =] .
1x2 struct array with fields:

student

class =

1x2 struct array with fields:
student
grade

class =

1x2 struct array with fields:
student
grade

Table 2.16 : Class in MATLAB

MATLAB offers functions for working with structures, which are as
follows:

e isfield: Checks if a structure has a specific field.

e fieldnames: Lists all field names in a structure.

e rmfield: Removes a field from a structure:

student.name = 'John Doe'; Output

student.age = 21; fields =

student.scores = [95, 88, 92]; "name'

fields = fieldnames(student) 'age'’

% Returns {'name', 'age', 'scores'} ‘scores’

hasGrade = isfield(student, 'grade') hasGrade =

% Checks if 'grade' field exists o

student = rmfield(student, 'age') student =

% Removes the 'age' field name: ‘John Doe’
scores: [95 88 92]

Table 2.17 : Working with structure in MATLAB

2.2 Python

Python is a versatile, high-level programming language widely used in
fields such as data science, web development, automation, and artificial
intelligence. In contrast to MATLAB's matrix-centric design, Python is a
general-purpose language with a strong emphasis on readability and
simplicity. This section introduces how to define variables and understand
the fundamental data types in Python. Gaining proficiency with these types,
such as integers, floats, strings, lists, tuples, dictionaries, and sets will
significantly enhance your ability to write clean, efficient, and robust
Python programs.

2.2.1 Defining variables in Python

In Python, a variable is a reserved memory location used to store values.
Python is a dynamically typed language, meaning you do not need to
declare a variable’s type before assigning it a value.

To define a variable in Python, assign it a value with the equals sign (=):

X = 10

Assigns the integer 10 to the variable x
y = 5.5

Assigns the float 5.5 to the variable y
name = 'Alice’

Assigns a string to the variable name

Table 2.18 : Defining a variable in Python
Use the print () function to display variable values:

print(x) Output
Outputs 10 10
print(y) 5.5

Outputs 5.5 Alice
print(name)

Outputs Alice

Table 2.19 : Print function in Python
Some variable naming rules are as follows:
e Variable names must start with a letter or an underscore ().

e Names are case-sensitive, so Var and var are different.

e Python uses snake_case for
my_variable_name.

variable

naming,

such

as

You can check a variable’s type using the type() function, as shown in the

following table:

X = 10

y = 5.5

name = 'Alice'’
print(type(x))

Outputs <class 'int'>
print(type(y))

Outputs <class 'float'>
print(type(name))

Outputs <class ‘'str'>

Output
<class
<class
<class

'int'>
'float'>
‘str'>

Table 2.20: Variable type in Python

2.2.2 Data types in Python

Python has several built-in data types, allowing you to handle numbers,
sequences, mappings, and other data structures efficiently. Various data
types are mention in this section such as integer and floats. Moreover,

arithmetic operations are also mentioned.

2.2.3 Integers

Integers (int) represent whole numbers, positive or negative, with no
decimal point. Python integers have unlimited precision, meaning they can

grow as large as memory allows.

a = 10
b = -3
print(type(a))

Outputs <class 'int'>

<clas

Output

s 'int'>

Table 2.21: Data type in Python
Floats represent real numbers and include a decimal point. Floats are

essential for precise numerical calculations.

pi = 3.14159
g = -9.8
print(type(pi))

Outputs <class 'float'>

Output
<class

'float'>

Table 2.22 : Data type in Python

2.2.4 Arithmetic operations

Python supports common arithmetic operations with integers and floats,
like the following:

Addition: +
Subtraction: -

Multiplication: *

Division: /

Exponentiation: **
e Modulus: % (remainder after division):

a =10 Output

b =-3 7 31.4159 8
sum_result = a + b

product = a * pi

power = 2 ** 3

2 to the power of 3
print(sum_result, product, power)

Table 2.23 : Arithmetic operations in MATLAB
You can convert between int and float types as needed:

X = 10 Output
Integer 10
print(x)

y = float(x)

Converts x to a float (10.9)
print(y)

z = int(y)

Converts y back to an integer (10)
print(z)

10.0
10

Table 2.24 : Conversion of datatypes in Python

2.2.5 Strings

Strings represent sequences of characters. They are enclosed in single
quotes (') or double quotes ("), with triple quotes (' "' or """) used for
multi-line strings.

greeting = "Hello, World!" Output

print(greeting) Hello, World!
qu?te = 'Python is awesome Python is awesome
print(quote) o

multi line text = """This is a This is a
multi-line string""" multi-line string

print(multi line text)

Table 2.25 : String in Python

Python supports a wide array of operations with strings, which are as
follows:

e Concatenation: Combine strings using +.
e Repetition: Repeat strings using *.
* Indexing and slicing: Access specific characters or substrings.

Note: In slicing [7:12] up to 11 characters will be considered.

greeting = "Hello, World!" Output

quote = 'Python is awesome’ Hello, World! Python is awesome
hello_world = greeting + 12 eI Hello, World!Hello, World!
print(hello_world) H

repeat_text = greeting * 2
print(repeat_text) World
first_char = greeting[9]
print(first_char)

First character ('H')
substring = greeting[7:12]
print(substring)

Slice ('World")

Table 2.26: Concatenation, repetition, indexing, and slicing in Python

Common string methods

Python provides several built-in methods for efficient string manipulation.
The .upper() and .lower() methods convert text to uppercase and
lowercase, respectively, while .strip() removes any leading or trailing
whitespace; useful for cleaning input data. The .replace() method
allows substitution of specific substrings within a string, and .find()
helps locate the position of a substring. These methods are essential for
tasks including text cleaning, formatting, and analysis.

Python has the following built-in methods for string manipulation:
e .upper() and .lower(): Convert to uppercase or lowercase.
e .strip(): Remove whitespace from the beginning and end.
e .replace(): Replace occurrences of a substring.
e .find(): Find the position of a substring:

text = " Hello Python " Output

print(text) Hello Python
text_upper = text.upper() HELLO PYTHON

print(text_upper)
text_stripped = text.strip() Hello Python

print(text_stripped) Hi Python
new_text = text.replace("Hello", "Hi") 7
print(new_text)

index = text.find("Python")
print(index)

Table 2.27: Common string methods in Python

Escape characters

The following escape characters allow special formatting within strings:
e \n: New line
e \t: Tab

¢ \\: Backslash

path = "C:\\Users\\Username"

Windows file path

formatted text = "Hello\nWorld"
New line in string

Table 2.28: escape characters in Python

2.2.6 Lists
Let us look at the definition and characteristics of lists.

In programming, a list is a data structure that stores an ordered collection of
items, which can be of various types, such as numbers, strings, or even
other lists. Lists are dynamic, meaning they can grow or shrink in size as
needed, and they allow for duplicate values. Each item in a list is stored at a
specific index, with indexing usually starting from zero.

Some key characteristics of lists are:

Ordered: The elements have a specific order based on the position at
which they were added.

Mutable: Lists can be modified after creation by adding, removing, or
updating elements.

Heterogeneous: Lists can contain elements of different types (e.g.,
integers, strings, floats).
Indexable: Items can be accessed and manipulated using their index.

2.2.7 Use cases and importance in data handling

Lists are integral to data handling and manipulation across various domains
for several reasons:

Data storage and organization: Lists enable efficient organization of
data, such as storing a series of measurements, user inputs, or records
in a predictable and accessible format.

Iteration and aggregation: Lists facilitate looping or iterating through
elements, which is crucial in tasks like data processing, transformation,
and aggregation.

Flexible: Lists can change in size, making them suitable for scenarios
where data volume is unknown in advance or varies dynamically (e.g.,
reading data from user input or a file).

Efficient access and modification: Lists provide efficient access and
modification of data using indexing, which is valuable for algorithms
that require frequent data retrieval and updates.

Data analysis: Lists are often used in data analysis, especially in
programming languages like Python, where they act as the foundational
data structure in libraries, such as Pandas and NumPy.

Creating lists

Basic list creation: To create a basic list, you simply enclose your data
elements within square brackets [], separated by commas. Lists can
contain any data type, and elements do not have to be of the same type.

Example of basic list creation Output

numbers = [1, 2, 3, 4, 5] [1, 2, 3, 4, 5]
mixed list = [1, "apple"”, 3.5, True] [1, 'apple', 3.5, True]

Table 2.29: List creation in Python

Using range() to generate lists: The range() function is a convenient
way to generate a sequence of numbers. When combined with the 1ist()

function, it creates a list of integers from a specified start to end, with an
optional step.

Generating a list of numbers from @ to |Output

9 [e, 1, 2, 3, 4, 5, 6, 7, 8, 9]
numbers = list(range(10))
print(numbers)

Generating a list with a custom start, |Output

stop, and step [2, 4, 6, 8, 10, 12, 14, 16,
even_numbers = list(range(2, 20, 2)) 18]

print(even_numbers)

Table 2.30: Range function in Python

List comprehension basics: List comprehension is a powerful feature in
Python that enables you to create lists concisely, as shown in Tables 2.31
and 2.32. It is an elegant way to transform and filter elements in a list in a
single line of code.

The basic syntax for list comprehension is:
new _list = [expression for item in iterable if condition]

Table 2.31: List comprehension basics in Python

Creating a 1list of squares using 1list|Output

compr‘ehension [e’ 1, 4, 9, 16, 25, 36,
squares = [x ** 2 for x in range(190)] 49, 64, 81]
print(squares)

Creating a list of even numbers with 1list |Output
comprehension [0, 2, 4, 6, 8]
evens = [x for x in range(10) if x % 2 == 0]
print(evens)

Table 2.32: List comprehension basics in Python

Accessing list elements

Indexing and slicing: In Python, lists are zero-indexed, meaning the first

element is accessed using index 0, the second element with index 1, and so
on. You can also retrieve a subset of elements (a slice) using a start and stop

index.
Sample list Output
fruits = ["apple", "banana", "cherry", apple
"date", "elderberry"] cherr
Accessing elements by index y
print(fruits[0])
print(fruits[2])
Sample list Output
fruits = ["apple", "banana", "cherry", ['banana', 'cherry', 'date']
"date", "elderberry"] . : 0 :
D) ["apple’, banana’,
Slicing the 1list "cherry']
print(fruits[1:4])
. . 'cherry’ 'date’
print(fruits[:3]) Eelderbir;y'] ?
print(fruits[2:])

Table 2.33 : Access of the list elements in Python

Negative indexing allows you to access elements starting from the end of
the list. For instance, -1 refers to the last element, -2 to the second-last,

and so on.

Accessing elements from the end of Output

the list elderberry

fruits = ["apple", "banana", "cherry",

"date", "elderberry"] el

print(fruits[-1])

print(fruits[-3])

Slicing with negative indices Output

print(fruits[-3:]) ['cherry', 'date', 'elderberry']

Table 2.34 : Access of the list elements in Python

Lists can contain other lists as elements, which are known as nested lists. To
access elements within a nested list, you use multiple indexing levels.

Sample nested list

nested list = [["apple", "banana"],
["carrot", "date"], ["eggplant",
“fig"]]

Accessing elements in a nested list
print(nested_list[9])

Output
['apple’,
carrot

'banana’]

fig

print(nested list[1][@])
print(nested_list[2][1])

Sample nested list Output

nested_list = [["apple", "banana"], [['apple’, 'blueberry'],
["carrot”, "date"], ["eggplant”, ['carrot', 'date'], ['eggplant',
"fig"]] fig']]

Modifying an element in a nested

list

nested 1list[@][1] = "blueberry"
print(nested_list)

Table 2.35: Nested list in Python

Modifying lists

Let us learn how to modify the elements of a list. Under such aspect,
different functions are explained such as, append(), insert(),
extend(), remove(), pop(), clear(), etc.

e Adding elements:
o append(): Adds a single element to the end of the list.

fruits = ["apple"”, "banana"] Output
fruits.append("cherry") ['apple', 'banana', 'cherry']
print(fruits)

Table 2.36 : Appending in list in Python
o insert(): Adds an element at a specified index in the list.

fruits = ["apple", "banana", Output

“cherry”] ['apple', 'blueberry', 'banana',
fruits.insert(1, "blueberry") "‘cherry’]

print(fruits)

Table 2.37 : Insertion of element into a list in Python

o extend(): Adds all elements of an iterable (e.g., another list) to the
end of the list.

fruits = ["apple","blueberry", Output
“banana”, "cherry"] ['apple', 'blueberry', 'banana',
fruits.extend(["date", 'cherry', 'date', 'elderberry']

"elderberry"])
print(fruits)

Table 2.38 : Extension of element of list in Python

e Removing elements:

o remove(): Removes the first occurrence of a specified element from
the list. If the element 1s not found, it raises an error.

fruits = ["apple”,"blueberry", Output
“banana®, “cherry”,"date”, ['apple', 'blueberry', ‘'cherry',
"elderberry"] 'date', 'elderberry']

fruits.remove("banana")

print(fruits)

Table 2.39 : Removal of list

element in Python

o pop(): Removes and returns the element at a specified index. If no
index is specified, it removes the last element.

fruits = ["apple"”,"blueberry", Output

"cherry", "date", "elderberry"] ['apple’, 'cherry’, 'date’,
fruits.pop(1) ‘elderberry']

Removes element at index 1

print(fruits)

last_fruit = fruits.pop() Output

Removes and returns the last element elderberry

print(last_fruit) ['apple', 'cherry', 'date']
print(fruits)

Table 2.40: Pop function in Python

o clear(): Removes all elements from

the list, making it an empty list.

uon
)

fruits cherry","date"]

["apple
fruits.clear()

print(fruits)

Output
[]

Table 2.41: Clear function in Python

e Updating elements at specific positions: To update an element at a
specific index, simply use indexing to access the element and assign it

a new value.

Sample list

fruits ["apple", "banana", "cherry"]

Updating an element at a specific index
fruits[1] = "blueberry"

Output

["apple’,
‘cherry’]

'blueberry’,

print(fruits)

Updating multiple elements by slicing Output
fruits[0:2] = ["avocado", "blackberry"] ['avocado', 'blackberry',
print(fruits) ‘cherry']

Table 2.42 : Updating list element in Python

List operations

List operations are of various types such as concatenation and repetition.
Membership can also be tested via membership checks in Python:

e Concatenation and repetition:
o Concatenation (+): Combines two lists into a single list.

listl = [1, 2, 3] Output

list2 = [4, 5, 6] [1, 2, 3, 4, 5, 6]
combined = listl + list2

print(combined)

Table 2.43: List concatenation in Python
o Repetition (*): Repeats the elements of a list a specified number of

times.
numbers = [0, 1] Output
repeated = numbers * 3 [6, 1, o, 1, o, 1]
print(repeated)

Table 2.44 : Repetition in Python for list elements
e Membership check using in and not in:
o in: Checks if an element is present in the list.

fruits = ["apple"”, "banana", "cherry"] Output
print("apple" in fruits) True
print("date" in fruits) False

Table 2.45 : Membership check in Python
o not in: Checks if an element is not present in the list.

fruits = ["apple"”, "banana", "cherry"] Output
print("date" not in fruits) True

Table 2.46 : Membership check in Python
e Sorting, reversing, and finding the length of a list:

o sort() and sorted(): Sorts the elements of a list in ascending order by
default. sort() modifies the original list, while sorted() returns
a new sorted list.

numbers = [3, 1, 4, 1, 5] Output
numbers.sort() [1, 1, 3, 4, 5]
Sorts in place
print(numbers)

Using sorted() to create a new sorted list Output

original = [3, 1, 4, 1, 5] [3, 1, 4, 1, 5]
sorted_numbers = sorted(original) [1, 1, 3, 4, 5]
print(original)

print(sorted_numbers)

Table 2.47 : Sorting in Python
o reverse() and reversed(): Reverses the order of elements in the list.

reverse() modifies the original list, while reversed() returns
an iterator with the reversed order.

numbers = [1, 2, 3, 4] Output
numbers.reverse() [4, 3, 2, 1]
Reverses in place

print(numbers)

Using reversed() to get a reversed list without Output
modifying the original [1, 2, 3, 4]

original = [1, 2, 3, 4]
reversed_numbers = list(reversed(original))

[4, 3, 2, 1]

print(original)
print(reversed_numbers)

Table 2.48 : Reverse and reversed functions in Python
o len(): Returns the number of elements in a list.

fruits = ["apple"”, "banana", "cherry"] Output
print(len(fruits)) 3

Table 2.49 : Len function in Python

Let us look at some common list methods and functions:
e Basic functions: min(), max()
o min(): Returns the smallest element in the list.

numbers = [1, 2, 3, 4] Output
print(min(numbers)) 1

Table 2.50: Common list methods in Python
o max(): Returns the largest element in the list.

numbers = [1, 2, 3, 4] Output
print(max(numbers)) 4

Table 2.51: Common list methods in Python
e Counting and indexing: count(), index()

o count(): Returns the number of occurrences of a specified element in

the list.
numbers = [1, 2, 2, 3, 4, 2] Output
print(numbers.count(2)) 3

Table 2.52: Common list methods in Python

o index(): Returns the index of the first occurrence of a specified
element. Raises a ValueError if the element is not found.

numbers = [1, 2, 2, 3, 4, 2] Output

print(numbers.index(3)) 3
(index of the first occurrence of
3)

Table 2.53 : Common list methods in Python

Types of lists (2D lists)

In Python, 2D lists (or lists of lists) are commonly used to represent
structures like matrices or tables where data is organized in rows and
columns.

e Creating a 2D list: A 2D list is simply a list where each element is
itself a list. Here is an example that creates a 2D list with 3 rows and 3
columns.

Creating a 3x3 matrix
matrix = [[1, 2, 3],
[4, 5, 6],
[7, 8, 9]]
print(matrix)

Output
([, 2, 3], [4, 5, 6], [7, 8, 9]]

Table 2.54: 2D list in Python

* Accessing elements in a 2D list: To access elements in a 2D list, you
use two indices: the first for the row and the second for the column.

Accessing elements in the matrix
print(matrix[0][0])
print(matrix[1][2])
print(matrix[2][1])

Output
1
6
8

Table 2.55 : Access of element in 2D list in Python

e Modifying elements in a 2D list: You can modify elements in a 2D list
by directly accessing them with their row and column indices.

Modifying an element
matrix[@][1] = 20
print(matrix)

Output
[[1, 2o, 3], [4, 5, 6], [7, 8, 9]]

Table 2.56 : Modifying element in 2D list in Python

2.2.8 Matrix representation and basic operations

Matrices is a well-known concept which is essential in Python as well.
There exist different concepts in this regard, such as how to create an
identity matrix, and how to add two matrices in Python:

Creating a 2x2 identity matrix:

identity matrix = [[1, @], [0, 1]]
print(identity matrix)

Output
[[1, e], [e, 1]]

Table 2.57: Identity matrix in Python
Adding two matrices: You can add two matrices by adding corresponding

elements in each row and column.

matrix_a
matrix b =

[[1, 2], [3, 4]]
[[5, 6], [7, 8]]

Output
[[6, 8], [10, 12]]

Initializing an empty matrix to store the

result
result = [[0, 0], [0, O]]
Adding matrices element-wise
for i in range(len(matrix_a)):
for j in range(len(matrix_a[@])):
result[i][j] = matrix_a[i][j] +
matrix b[i][7]
print(result)

Table 2.58 : Matrix addition in Python

2.2.9 Tuples

A tuple is a built-in data structure in Python that allows you to store a
collection of items in a single variable. Like lists, tuples can contain
multiple data types, including integers, strings, lists, and even other tuples.
However, tuples are often used when the data stored in the collection should
not be changed throughout the program.

The definition and characteristics of tuples are:
e Immutable: Tuples are immutable, meaning that once a tuple is
created, its elements cannot be modified, added, or removed.
e Ordered: Elements within a tuple have a defined order, which means
that indexing and slicing operations are possible.
e Heterogeneous elements: Tuples can store elements of different data
types (e.g., integers, strings, other tuples).
e Fixed size: Since tuples are immutable, they have a fixed size after
their creation.
Syntax: A tuple is created by placing elements inside parentheses () and
separating them with commas:

my tuple = (1, "apple", 3.14) Output
print(my_tuple) (1, 'apple', 3.14)

Table 2.59: Tuple in Python

Creating tuples

Tuples in Python are easy to create and offer a simple, efficient way to store
ordered data. Here is an overview of basic tuple creation, special cases for

single-element tuples, and how to unpack tuples for multiple assignments:
e Basic tuple creation: To create a tuple, place a series of values
separated by commas inside parentheses (). Tuples can contain any
data type, including other tuples.

Creating a tuple with multiple elements |Output
my_tuple = (1, "apple", 3.14, True) (1, 'apple', 3.14, True)
print(my_tuple) o vl

1
Nested tuple (1, (fa’, 'b"), 3)
nested tuple = (1, ("a", "b"), 3)
print(nested_tuple)

Table 2.60: Tuple creation in Python

e Single-element tuples and comma usage: A single-element tuple
needs special syntax to distinguish it from a regular value enclosed in
parentheses. For a single-element tuple, add a trailing comma after the
element.

Without the comma, Python interprets Output
this as an integer in parentheses 5
not_a_tuple = (5)

Adding a comma makes it a tuple Output
single_element_tuple = (5,) (5,)
print(single _element tuple)

Table 2.61 : Tuple creation in Python

e Tuple unpacking and multiple assignments: Tuple unpacking allows
you to assign values from a tuple to multiple variables in a single line.
This feature makes it easy to work with tuples that contain related data.

Basic tuple unpacking Output
person_info = ("Alice", 30, "Engineer") |Alice
name, age, profession = person_info

Result 30
print(name) Engineer
print(age)

print(profession)

Table 2.62 : Tuple creation in Python

Tuple unpacking can also be useful for swapping values without using a
temporary variable:

X =5 Output

y = 10 10
X, Yy =Yy, x # Swaps values of x and y (g
print(x)

print(y)

Table 2.63: Tuple unpacking in Python

Accessing tuple elements

Tuples support indexing and slicing, similar to lists, allowing access to
individual elements or subparts of a tuple. They also enable accessing
elements within nested tuples:

e Indexing tuples: You can access individual elements of a tuple using
square brackets [] with an index value. Indexing in tuples (like in most

programming languages) starts at 0, where 0 is the first element, 1 is
the second, and so on.

my tuple = ("apple", "banana", "cherry") Output
Access the first element apple

print(my_ tuple[0])

my_tuple = ("apple", "banana", "cherry") Output
Access the last element using a negative |cherry
index

print(my_tuple[-1])

Table 2.64 : Access of tuple element in Python
e Slicing tuples: You can access a range of elements in a tuple using
slicing. The syntax for slicing is [start:end], where start is the
index to begin the slice, and end is the index where slicing stops

(exclusive).
my_tuple = (1, 2, 3, 4, 5) Output
Slice from index 1 to 3 (excludes index 3) (2, 3)

print(my_tuple[1:3])

Slice from the beginning to index 2 (excludes |Output
index 2) (1, 2)
print(my_tuple[:2])

Slice from index 2 to the end Output
print(my_tuple[2:]) (3, 4, 5)

Table 2.65 : Tuple slicing in Python

e Accessing nested tuples: When a tuple contains other tuples as
elements (nested tuples), you can access elements within these nested

structures by chaining indexes.

"y, "2")

print(nested_tuple[2][-1])

Access the last element of the last tuple

nested_tuple = (("a", "b", "c"), (1, 2, 3), ("x", Output
Ilyll.’ IIZII)) 1

It access first element of second tuple
print(nested_tuple[1][0])

nested tuple = (("a", "b", "c"), (1, 2, 3), ("x", Output

Table 2.66: Nested tuple in Python

Tuple operations

Tuples support various operations, including concatenation, repetition,
membership checks, and finding properties like length, maximum, and
minimum values. Let us look at them in detail:

e Concatenation and repetition: Concatenation allows you to combine
two or more tuples into a single tuple using the + operator. Since tuples
are immutable, this operation produces a new tuple rather than

modifying existing ones.

tuplel = (1, 2, 3)

tuple2 = (4, 5, 6)

Concatenate tuples

combined tuple = tuplel + tuple2
print(combined_tuple)

Output

(1) 2’ 3) 4, 5’ 6)

Table 2.67 : Tuple operations in Python

Repetition allows you to repeat the elements of a tuple multiple times

by using the * operator.

my tuple = ("apple", "banana")
Repeat elements in the tuple
repeated_tuple = my_tuple * 3
print(repeated_tuple)

Output
('apple’,

'banana’, 'apple', 'banana’)

'banana’,

‘apple’,

Table 2.68 : Tuple operations in Python

e Membership check using in and not in: The in and not in operators
allow you to check if an element exists in a tuple.

fruits = ("apple”, "banana", "cherry") Output
Check if 'apple' is in the tuple True
print("apple" in fruits)

fruits = ("apple”, "banana", "cherry") Output
Check if ‘'orange' is not in the tuple |True

print("orange"” not in fruits)

Table 2.69: Membership check in Python

e Finding length, maximum, and minimum elements: You can use
built-in functions to find the length, maximum, and minimum values in
a tuple (provided the elements are of comparable types):
o Length: The 1en() function returns the number of elements in the
tuple.
o Maximum/Minimum: The max() and min() functions return the
largest and smallest elements, respectively.

numbers = (10, 20, 30, 40, 50) Output
Find length of the tuple 5
print(len(numbers))

Find the maximum value Output
print(max(numbers)) 50
Find the minimum value Output
print(min(numbers)) 10

Table 2.70: Tuple basic operations in Python

Tuple methods and built-in functions

Tuples have limited built-in methods due to their immutability, but they
include some useful methods and functions. Here is a quick guide on
commonly used tuple methods and relevant built- in functions:
e Tuple methods count(): The count() method returns the number of
times a specified value appears in the tuple.

Syntax: tuple.count(value)

my_tuple = (1, 2, 2, 3, 4, 2) Output
Count occurrences of 2 3
print(my_tuple.count(2))

Table 2.71: Tuple built-in function in Python

 index(): The index () method returns the index of the first occurrence
of a specified value. If the value is not found, it raises a ValueError.

Syntax: tuple.index(value)

my tuple = ("apple", "banana", "cherry") Output
Find index of 'banana' 1
print(my_tuple.index("banana"))

Table 2.72: Tuple indexing in Python

e Built-in functions len(): The 1len() function returns the number of
elements in a tuple.

my_tuple = (10, 20, 30) Output
Length of the tuple 3
print(len(my_tuple))

Table 2.73 : Built-in function len() in Python

e min(): The min() function returns the smallest element in the tuple (if
the elements are comparable).

numbers = (10, 20, 5, 30) Output
Minimum value 5

print(min(numbers))

Table 2.74: Tuple smallest element in Python

e max(): The max() function returns the largest element in the tuple (if
the elements are comparable).

numbers = (10, 20, 5, 30) Output
Maximum value 30

print(max(numbers))

Table 2.75 : Tuple maximum element in Python

e sum(): The sum() function returns the total of all numeric elements in
the tuple.

numbers = (1, 2, 3, 4) Output
Sum of all elements 10
print(sum(numbers))

Table 2.76 : Tuple sum() in Python

2.2.10 Dictionaries

A dictionary in programming, particularly in Python, is a data structure that
stores data as key-value pairs. It is a built-in data type in Python that allows
you to store and retrieve data by associating a unique key with each value.
Dictionaries are incredibly versatile and widely used for situations where
you need to look up information quickly.

In Python, a dictionary is defined using curly braces {} with a series of

key-value pairs, where each key is separated from its value by a colon and
each pair is separated by a comma. For example:

my dictionary = {
"name": "Alice",
"age": 25,
"city": "New York"

Table 2.77: Dictionary in Python
The characteristics of dictionaries are:

e Unordered: Dictionaries in Python are unordered, meaning that the
items do not have a defined order. From Python 3.7+, dictionaries
maintain the insertion order, but it is not considered ordered in the
traditional sense, like a list.

e Mutable: Dictionaries are mutable, which means you can change the
contents (add, remove, or update key-value pairs) after they are
created.

e Unique keys: Each key in a dictionary must be unique. If you try to
use the same key more than once, the latest value will overwrite the
previous one.

e Key-value pairs: Each entry in a dictionary is a pair of a key and its
corresponding value. The key acts as a unique identifier, and the value
is the associated data.

o Efficient lookups: Dictionaries allow for fast retrieval of data through
keys, which makes them suitable for situations where you need to
perform frequent lookups.

e Heterogeneous values: Dictionary values can be of any data type
(integers, strings, lists, or even other dictionaries), and there is no
restriction on the types that values can hold.

Creating dictionaries

Basic dictionary creation: You can create a dictionary by directly defining
key-value pairs within curly braces {}.

Creating a dictionary directly Output
my_dictionary = { {"'name"': "Alice’, ‘age': 25,
"name": "Alice", city': 'New York'}
"age": 25,
"city": "New York"
}
print(my_dictionary)
Table 2.78: Dictionary creation in Python
A dictionary can be updated through the following:
Creating an empty dictionary and then |Output
my_dictionary = {} ‘city': 'New York'}
my_dictionary["name"] = "Alice"

my_dictionary["age"] = 25
my dictionary["city"] = "New York"
print(my_dictionary)

Table 2.79 : Dictionary updation in Python

Using dictionary comprehension: Dictionary comprehension is a concise
way to create dictionaries. It allows you to generate key-value pairs using a
single line of code, usually based on some expression or condition.

{key_expression: value_expression for item in iterable}

Table 2.80: Basic syntax
Syntax:

e (Creating a dictionary with squares of numbers as values:

squares = {x: x**2 for x in range(1,

6)}

print(squares)

Output
{1: 1, 2: 4, 3: 9, 4: 16, 5: 25}

Table 2.81 : Dictionary with square of numbers

e Creating dictionaries from lists:

o Using zip() to combine two lists into a dictionary: If you have two
lists, one with keys and one with corresponding values, you can use
the zip () function to combine them into a dictionary.

keys = ["name", "age", "city"]

values = ["Alice", 25, "New York"]
my_dictionary = dict(zip(keys, values))
print(my_dictionary)

Output
{'name’': ‘'Alice', ‘'age': 25,
'city': 'New York'}

Table 2.82 : List combing using zip()

o Converting a list of tuples into a dictionary: If you have a list of
tuples, where each tuple contains a key-value pair, you can use the
dict() function to create a dictionary.

list of tuples = [("name", "Alice"),
("age", 25), ("city", "New York")]
my_dictionary = dict(list_of_tuples)
print(my dictionary)

Output
{'name’': 'Alice', ‘'age': 25,
'city': 'New York'}

Table 2.83 : Conversion of list of tuples in dictionary

Accessing and modifying dictionary elements

Here, we discuss how any element can be accessed from a dictionary and
how the dictionary element may be modified. Detailed aspects in this regard

is provided ahead:
e Accessing dictionary elements:

o Using square brackets: To retrieve a value, simply use the key

within square brackets.

my_dictionary = {"name": "Alice", Output
"age": 25, "city": "New York"} Alice
print(my_dictionary["name"]) Note: If you try to access a key

that does
raise a KeyError.

not exist, this will

Table 2.84 : Access of dictionary element in Python

o Using the get() method: The get () method is a safer way to access
dictionary values as it allows you to specify a default value if the

key does not exist.

my_ dictionary = {"name": "Alice",
"city": "New York"}
print(my_dictionary.get("age"))
print(my_dictionary.get("country",
Found"))

"age“ :

25,

"Not

Output
25

Not Found

Table 2.85 : get() method in Python
e Modifying dictionary elements: Dictionaries are mutable, so you can
easily update values, add new key-value pairs, or delete existing ones.

o Updating an existing key: To update the value of an existing key,
use square brackets [] with the key and assign a new value.

my_dictionary["age"] = 26
print(my_dictionary)

Output
{'name': 'Alice', 'age': 26, 'city':
"New York'}

Table 2.86 : Dictionary update in Python

o Adding a new key-value pair: To add a new key-value pair, use
square brackets [] with the new key and assign the value.

my_dictionary["country"] = "USA"
print(my_dictionary)

Output
{"'name’

'city':

'USA'}

s 'Alice’,
'New York"',

‘age': 26,
‘country':

Table 2.87: Addition of key-value pair in Python

* Removing elements from a dictionary: You can remove items from a
dictionary using several methods:

o Using the pop() method: The pop() method removes the item with
the specified key and returns its value. If the key does not exist, you
can provide a default value to avoid errors.

my_dictionaryl = {"name": "Alice",
"age": 25, "city": "New York"}
age = my_dictionaryl.pop("age")
print(age)

print(my_dictionaryl)

Output
25
{"'name"':
York"'}

'Alice', ‘'city': ‘'New

Table 2.88 : Dictionary pop() method in Python

o Using the popitem() method: The popitem() method removes and
returns the last inserted key-value pair. This method is useful when
working with recent Python versions (Python 3.7+) that maintain
insertion order in dictionaries.

last_item = my _dictionaryl.popitem() |Output
print(last_item) ('city', 'New York'")
print(my_dictionaryl) {'name’': 'Alice'}

Table 2.89 : popitem() method in Python

o Using the del statement: The del statement deletes the item with
the specified key. This will raise a KeyError if the key does not

exist.
my dictionary2 = {"name": "Alice", Output
"age": 25, "city": "New York"} {'name': 'Alice', 'age': 25}

del my dictionary2["city"]

print(my_dictionary2)

Table 2.90: Dictionary del statement in Python

o Using the clear() method: The clear() method removes all items
from the dictionary, resulting in an empty dictionary.

my_dictionary2 = {"name": "Alice", Output
"age": 25, "city": "New York"} {}

my_dictionary2.clear()

print(my_dictionary2)

Table 2.91 : Dictionary clear() method in Python

Dictionary methods and functions

There exists several dictionary methods such as keys(), values(),
items(), update(), pop(), clear(), 1len(), sorted() arec discussed
in detail as follows.
e Dictionary methods:
o keys(): The keys () method returns a view object that displays a list
of all the keys in the dictionary. This view is dynamic, meaning it

reflects changes made to the dictionary.

my dictionary = {"name": "Alice",
"age": 25, "city": "New York"}
print(my_dictionary.keys())

Output

dict_keys (['name’,

lagel_’

‘city'])

Table 2.92 : Dictionary methods in Python

o values(): The values () method returns a view object that contains
all values in the dictionary. This view is also dynamic.

print(my_dictionary.values()) Output

dict_values(['Alice', 25, 'New
York'])

Table 2.93 : Dictionary methods in Python

o items(): The items () method returns a view object that displays a
list of the dictionary’s key-value pairs as tuples. This view is useful
for looping through both keys and values at the same time.

print(my_dictionary.items()) Output
dict_items([('name’, 'Alice'),
('age', 25), ('city', "New

York')])

Table 2.94 : Dictionary methods in Python
o update(): The update() method updates the dictionary with key-
value pairs from another dictionary or from an iterable of key-value
pairs. If the key already exists, update() overwrites its value; if
not, it adds the key-value pair to the dictionary.

my_dictionary.update({"age": 26, Output

“country”: "USA"}) {'name': ‘'Alice', ‘age': 26,

print(my dictionary) 'city': 'New York', ‘'country':
'USA'}

Table 2.95 : Dictionary methods in Python

o pop(): The pop() method removes a specified key from the
dictionary and returns its value. You can specify a default value to
avoid KeyError if the key does not exist.

age = my_dictionary.pop("age", Output

"Not Found") 26
print(age) print(my_dictionary) {'name": ‘Alice’, ‘city': "New

| |York', 'country': 'USA'}

Table 2.96 : Dictionary methods in Python

o clear(): The clear () method removes all items from the dictionary,
making it an empty dictionary.

my_dictionary.clear() Output
print(my_dictionary) {}

Table 2.97: Dictionary methods in Python
e Built-in functions for dictionaries:

o len(): The 1en() function returns the number of items (key-value
pairs) in the dictionary.

my dictionary = {"name": "Alice", "age": |Output
25, "city": "New York"} 3

print(len(my_dictionary))

Table 2.98 : Dictionary built-in function in Python

o sorted(): The sorted() function returns a sorted list of the
dictionary’s keys. You can also specify whether to sort in ascending
(default) or descending order.

print(sorted(my_dictionary)) Output

print(sorted(my_dictionary, ['age', 'city', 'name']
reverse=True)) .
['name', 'city', 'age']

Table 2.99 : Dictionary built-in function in Python

Working with nested dictionaries

Working with nested dictionaries involves creating dictionaries within
dictionaries. This structure is useful for representing hierarchical or
structured data. Here is how you can create, access, update, and delete
values within nested dictionaries:

e Creating nested dictionaries: A nested dictionary is simply a
dictionary where some values are themselves dictionaries.

students = { Output

"studentl”: { {'studentl': {'name': 'Alice’,
"name": "Alice", ‘age': 25, ‘'courses': ['Math’,

"age": 25, 'Science']}, 'student2’:

"courses": ["Math", "Science"] |{'name’: 'Bob’, ‘age': 22,
1, :cour§es:: ['History',
"student2": { English’1}}

"name": "Bob",

"age": 22,

"courses": ["History",

"English"]

}

}

Table 2.100: Nested dictionary in Python

e Accessing elements in nested dictionaries: To access elements in a
nested dictionary, chain the keys together using square brackets.

Access the name of studentl Output
print(students["studentl"]["name"]) Alice

Access the list of courses for
student2

print(students["student2"]["courses"])

['History', 'English']

Table 2.101 : Nested dictionary in Python

e Accessing specific elements within inner data structures: You can
go further to access items within nested lists (or other structures) inside
the nested dictionary.

Access the first course of studentl Output

print(students["studentl"]["courses" Math
[el)

Table 2.102 : Nested dictionary in Python

e Updating values in nested dictionaries: You can update values in a
nested dictionary by specifying the full path of keys.

Update studentl's age Output
students["studentl"]["age"] = 26 26
print(students["studentl"]["age"])

Table 2.103 : Nested dictionary in Python
e Adding a new key-value pair in the inner dictionary:

Add a new field "grade" for Output
studentl {'name': 'Alice', ‘'age': 26,
students["student1"]["grade"] = "A" ‘courses': ['Math', ‘'Science'],

print(students["studentl"]) ‘grade': 'A'}

Table 2.104 : Nested dictionary in Python

e Deleting elements in nested dictionaries: You can delete elements
from nested dictionaries by specifying the full path to the key you want
to remove.

e Deleting a key-value pair: To remove a specific key-value pair in an
inner dictionary, use the del statement.

Delete the "age" key for student2 Output
del students["student2"]["age"] {"name’: 'Bob’, ‘courses':
print(students["student2"]) ['History®, *English’]}

Table 2.105 : Nested dictionary in Python

e Deleting an entire inner dictionary: You can also delete an entire
nested dictionary by specifying its top-level key.

Delete the entire record for Output

studentl {'student2': {'name": 'Bob’,
del students["studentl"] ‘courses’: ['History',
print(students) ‘English’]}}

Table 2.106 : Nested dictionary in Python

e Using get() to access nested keys safely: When accessing nested
dictionaries, using get () can prevent errors if a key does not exist.

Safely access a key that might not Output

exist Not Found
print(students.get("studentl", (if studentl is deleted)
{}).get("grade", "Not Found"))

Table 2.107: Nested dictionary in Python

2.2.11 Sets

A set is a built-in data structure in Python that represents an unordered
collection of unique elements. Sets are useful when you want to store items
without duplicates and perform mathematical set operations like union,
intersection, and difference.

The definition of a set is that a set is defined by enclosing elements in curly
braces {} or by using the set() function, particularly when creating an

empty set, as {} by itself creates an empty dictionary.

Defining a set with elements Output

my set = {1, 2, 3, 4} {1, 2, 3, 4}
print(my set)

Creating an empty set
empty _set = set()

Table 2.108 : Set in Python

The characteristics of sets are:

Unordered: Sets do not maintain order, so elements may appear in a
different order each time you access the set. This also means you
cannot access elements using an index like you would 1n lists.

Unique elements: Sets automatically remove duplicate values,
ensuring each element is unique. If you add a duplicate, it will be
ignored.

Mutable (but with immutable elements): You can add or remove
items from a set, but each element within a set must be immutable (like
numbers, strings, and tuples). Lists and dictionaries, for instance,
cannot be set elements.

Unindexed: Since sets are unordered, they do not support indexing,
slicing, or other sequence-like behavior.

Highly optimized for membership testing: Sets are efficient for
checking if an element exists or not, making them ideal for scenarios
where membership checking is needed frequently.

Creating sets

As per the following description, it is mentioned how set can be created in
Python along with different set operations:

Basic set creation: You can create a set by simply enclosing elements
in curly braces {}, separated by commas. Each element in a set must be
unique, so any duplicates will be automatically removed:

Creating a set with unique elements |Output
my set = {1, 2, 3, 4, 5} {1, 2, 3, 4, 5}
print(my_set) {1, 2, 3, 4}

Set with duplicate values
my_set = {1, 2, 2, 3, 4, 4}
print(my_set)

Table 2.109 : Set création in Python

Note: To define an empty set, you cannot use {}, as this would
create an empty dictionary instead. Instead, use the set()
function.

o Using set() function for set creation: The set() function can be used
to create a set, especially if you are starting with no elements or if you
want to create a set from an iterable like a list, tuple, or string:

Creating an empty set Output
empty_set = set() set()
print(empty set) {1, 2, 3, 4}
Creating a set using set() with an

iterable

my set = set([1, 2, 3, 4])
print(my_set)

Table 2.110: Set creation in Python

» Creating sets from lists and strings: You can use the set() function
to create a set from other data types, such as lists and strings. This is
useful if you want to eliminate duplicates in a list or extract unique
characters from a string.

e Creating a set from a list: When you convert a list to a set, duplicates
are automatically removed, leaving only unique elements:

Creating a set from a list with Output
duplicate elements {1, 2, 3, 4, 5}

my list = [1, 2, 2, 3, 4, 4, 5]
my set = set(my list)
print(my set)

Table 2.111 : Set creation from list in Python

* Creating a set from a string: When creating a set from a string, each
character in the string becomes an element in the set, with duplicates
removed.

Creating a set from a string Output
my_string = "hello" {'h", 'o', '1l", 'e'}
my set = set(my_string)

: # duplicates of 'l' are removed
print(my set)

Table 2.112: Set creation from string in Python

Accessing and modifying set elements

Following is the detail regarding how to access and modify the elements in
a set. A full description is provided as follows:

e Adding elements to a set:

o Using add(): The add () method allows you to add a single element
to the set. If the element already exists in the set, it will not add it
again, as sets only store unique values.

my_set = {1, 2, 3} Output

my set.add(4) {1, 2, 3, 4}
print(my_set)

Attempting to add a duplicate Output

element {1, 2, 3, 4}
my_set.add(3) # 3 is not added again

print(my_set)

Table 2.113: Addition of set element in Python

o Using update(): The update() method allows you to add multiple
elements to a set at once. You can pass any iterable (like a list, tuple,
or another set) to update(), and it will add all unique elements
from that iterable to the set.

my set = {1, 2, 3} Output
my_set.update([4, 5, 6]) # Adding multiple |{1, 2, 3, 4, 5, 6}
elements
print(my_set)

Adding elements from another set Output
my_set.update({7, 8}) {1, 2, 3, 4, 5, 6, 7, 8}
print(my_ set)

Table 2.114 : Updation of set element in Python
e Removing elements from a set:

o Using remove(): The remove() method removes a specified
element from the set. If the element does not exist in the set, it raises
a KeyError. This method is best used when you are sure the
element is in the set.

my_set = {1, 2, 3, 4} Output
my_set.remove(3) {1, 2, 4}
print(my set)

Attempting to remove an element that |[Output

my_set.remove(5)

Table 2.115 : Removing of set element in Python

o Using discard(): The discard() method also removes a specified
clement from the set, but unlike remove (), it does not raise an error
if the element is not found. This makes it a safer option when you
are not sure if the element is in the set.

my_set = {1, 2, 3, 4} Output
my_set.discard(3) {1, 2, 4}
print(my_ set)

Attempting to discard an element that |Output

is not in the set {1, 2, 4}
my set.discard(5) # No error is raised
print(my_set)

Table 2.116 : Removing a specified element from the set in Python

o Using pop(): The pop() method removes and returns an arbitrary
element from the set. Since sets are unordered, you do not know
which element will be removed. If the set is empty, pop() raises a

KeyError.
my set = {1, 2, 3, 4} Output
removed_element = my_set.pop() 1
print(removed_element) {2, 3, 4}

print(my_set)

Attempting to pop from an empty set [Output

empty_set = set() KeyError: 'pop from an empty set'
empty_set.pop()

Table 2.117 : Set pop() method in Python

o Using clear(): The clear() method removes all elements from the
set, leaving it empty.

my_set = {1, 2, 3, 4} Output
my_set.clear() set()
print(my_set)

Table 2.118 : Set clear() method in Python

Set operations

Sets in Python support various operations that are based on mathematical
set theory, making them ideal for tasks that involve grouping, overlapping,
and finding distinct items. Here is a look at key set operations:

e Union: The union of two sets combines all unique elements from both
sets. This can be achieved using the | operator or the union()
method.

setl = {1, 2, 3} Output

set2 = {3, 4, 5} {1, 2, 3, 4, 5}
Using | operator
union_set = setl | set2
print(union_set)

Using union() method Output
union_set = setl.union(set2) {1, 2, 3, 4, 5}
print(union_set)

Table 2.119 : Set operations in Python
e Intersection: The intersection of two sets returns only the elements
that are common to both sets. This can be done using the & operator or
the intersection() method.

setl = {1, 2, 3} Output
set2 = {3, 4, 5} {3}

Using & operator
intersection_set = setl & set2
print(intersection_set)

Using intersection() method Output
intersection_set = setl.intersection(set2) {3}
print(intersection_set)

Table 2.120: Set operations in Python

e Difference: The difference of two sets returns elements that are in the
first set but not in the second. This can be achieved using — operator
or the difference() method.

setl = {1, 2, 3} Output
set2 = {3, 4, 5} {1, 2}
Using - operator
difference_set = setl - set2
print(difference_set)

Using difference() method Output
difference_set = setl.difference(set2) {1, 2}
print(difference_set)

Table 2.121 : Set operations in Python

e Symmetric difference: The symmetric difference of two sets returns
elements that are in either of the sets but not in both. This can be done
using the ~ operator or the symmetric_difference() method.

setl = {1, 2, 3} Output

set2 = {3, 4, 5} {1, 2, 4, 5}
Using ~ operator
symmetric_difference_set = setl ~ set2
print(symmetric_difference_set)

Using symmetric_difference() method Output

symmetric_difference set = {1, 2, 4, 5}
setl.symmetric_difference(set2)
print(symmetric_difference_set)

Table 2.122 : Set operations in Python
Additionally, Python provides convenient operators for membership testing:

e Membership testing: Sets are highly optimized for membership
testing, which allows you to quickly check if an element exists within
the set.

e Using in: The in keyword checks if an element is present in the set.

setl = {1, 2, 3} Output
print(2 in setl) True
print(4 in setl) False

Table 2.123 : Set operations in Python

e Using not in: The not in keyword checks if an element is not present in

the set.

setl = {1, 2, 3}
print(4 not in setl)
print(2 not in setl)

Output

True
False

Table 2.124 : Set operations in Python

Set methods

There exist different set methods in Python which are provided in detail as
follows:

e union():
o Description: Combines all unique elements from two or more sets.
o Syntax: setl.union(set2, set3, ...)

set a = {1, 2, 3}

set b = {3, 4, 5}

union_set = set_a.union(set_b)
print(union_set)

Output
{1) 2, 3, 4, 5}

Table 2.125 : Set methods in Python
e intersection():

o Description: Returns a set containing elements that are common in
all sets.

o Syntax: setl.intersection(set2, set3, ...)

set_a = {1, 2, 3}

set b = {3, 4, 5}
intersection_set =
set_a.intersection(set_b)
print(intersection_set)

Table 2.126 : Set methods in Python

Output
{3}

e difference():

o Description: Returns a set containing elements that are in the first
set but not in the other(s).

o Syntax: setl.difference(set2, set3, ...)

{1, 2, 3}
{3, 4, 5}

Output
{1, 2}

set_a
set b

difference _set = set a.difference(set _b)
print(difference_set)

Table 2.127 : Set methods in Python
e symmetric_difference():

o Description: Returns a set containing elements that are in either of
the sets but not in both (i.e., elements unique to each set).

o Syntax: setl.symmetric_difference(set2)

set_a = {1, 2, 3} Output
set b = {3, 4, 5} {1, 2, 4, 5}

symmetric_difference set =
set_a.symmetric_difference(set_b)

print(symmetric_difference_set)

Table 2.128 : Set methods in Python

e issubset():

o Description: Checks if all elements of the first set are present in the
second set.

o Syntax: setl.issubset(set2)

set_a = {1, 2} Output
set b = {1, 2, 3, 4} True
is subset = set a.issubset(set b)
print(is_subset)

Table 2.129: Set methods in Python
 issuperset():
o Description: Checks if all elements of the second set are present in
the first set.

o Syntax: setl.issuperset(set2)

set_ a = {1, 2, 3, 4} Output
set_b = {1, 2} True
is superset = set a.issuperset(set b)

print(is_superset)

Table 2.130: Set methods in Python
e isdisjoint():
o Description: Checks if two sets have no elements in common.

o Syntax: setl.isdisjoint(set2)

set_a = {1, 2} Output
set b = {3, 4} True
is disjoint = set_a.isdisjoint(set_b)

print(is_disjoint)

Table 2.131 : Set methods in Python

As per Table 2.132, a comparison of concepts is provided between
MATLAB and Python:

Feature List Tuple Dictionary Set
Definition Ordered, Ordered, Unordered Unordered collection
mutable immutable collection of of unique
collection collection key-value pairs | elements
Syntax list _name = |tuple_name = |dict_name = |[set_name =
[ilemez'zl, (ilemez'zl, {key1: {elementl,
element2] element2) valuel, element2}
key2:
value2}
Mutability Mutable (can be | Immutable Mutable (keys Mutable (elements can
modified) (cannot be cannot be be added or removed)
modified) modified, but
values can)
Order Ordered Ordered Unordered Unordered
Indexing Supports Supports No indexing No indexing
indexing and indexing and (access by key)
slicing slicing
Duplicates Allows Allows Keys must be Does not allow
duplicates duplicates unique (values | duplicates
can be
duplicates)
Use cases Storing an Storing fixed, Storing key- Storing unique values,
ordered unchangeable value pairs for | membership testing
collection of data quick lookup

elements

Feature List Tuple Dictionary Set
Performance Slower for Faster than lists | Fast lookup Faster for membership
lookups due to based on keys testing
compared to | immutability
dictionaries
and sets
Adding elements |append(), Not dict[key] = |add(), update()
insert() applicable value,
extend() (immutable) |update()
Removing remove(), Not pop(key), remove(),
elements pop(), applicable |popitem(), discard(),
clear() (immutable) |[clear() clear()
Definition Ordered, Ordered, Unordered Unordered collection
mutable immutable collection of of unique
collection collection key-value pairs | elements
Syntax list _name = |tuple_name = |dict_name = |[set_name =
[ilemez'zl, (ilemez'zl, {key1: {elementl,
element2] element2) valuel, element2}
key2:
value2}
Mutability Mutable (can be | Immutable Mutable (keys Mutable (elements can
modified) (cannot be cannot be be added or removed)
modified) modified, but
values can)
Order Ordered Ordered Unordered Unordered
Indexing Supports Supports No indexing No indexing
indexing and indexing and (access by key)
slicing slicing
Duplicates Allows Allows Keys must be Does not allow
duplicates duplicates unique (values | duplicates
can be
duplicates)
Use cases Storing an Storing fixed, Storing key- Storing unique values,
ordered unchangeable value pairs for | membership testing
collection of data quick lookup

elements

Feature List Tuple Dictionary Set
Performance Slower for Faster than lists | Fast lookup Faster for membership
lookups due to based on keys testing
compared to | immutability
dictionaries
and sets
Adding elements |append(), Not dict[key] = |add(), update()
insert() applicable value,
extend() (immutable) |update()
Removing remove(), Not pop(key), remove(),
elements pop(), applicable popitem(), discard(),
clear() (immutable) |[clear() clear()
Concatenation + operator + operator Not directly, but |union() method
can be merged
with update()
Common append(), count(), keys(), add(),
methods extend(), index() values(), remove(),
insert(), 1tims(), union(),
remove() ged(%, intersection(),
? update() difference()
pop(),
sort(),
reverse()
Comprehension | List Tuple Dictionary Set comprehension
support comprehension | comprehension | comprehension | supported
supported not supported supported
Hashable Unhashable Hashable if Only keys are Only frozenset is
(lists cannot be | containing hashable hashable
dictionary keys | ;mmutable
or set elements) |elements
Memory Uses more Uses less Memory More memory efficient
efficiency memory than memory than efficiency for unique collections
tuples lists depends on
number of

entries

Feature List Tuple Dictionary Set
Typical Managing Storing data that | Data structures | Filtering unique items,
applications ordered, should not for mappings fast
changeable change and fast lookups | membership tests
collections of
items

Iteration Can iterate using | Can iterate using | Can iterate over |Can iterate using for
for loop for loop keys, values, or |loop

key- value pairs

Example my_ list = my_tuple = my_dict = my set = {1,
[1, 2, (1, {"a": 1, 2, 3, 4}
3, 4] 2, 3, 4) "b": 2}

Table 2.132: Table of comparison between MATLAB and Python

2.3 Comparison of examples via MATLAB and

Python

Let us look at the following examples for comparison:

e Example 2.1: Create a matrix and calculate the transpose, element-
wise multiplication, and matrix multiplication:

MATLAB code

Python code

A =11, 2; 3, 4];
B =[5, 6; 7, 8];
% Transpose

A _transpose = A’;

% Element-wise multiplication
¥ B;

% Matrix multiplication

A * B;
disp('Transpose:'),
disp(A_transpose)

C_elementwise = A

C_matrix =

disp('Element-wise
multiplication:'),
disp(C_elementwise)

disp('Matrix multiplication:'),
disp(C_matrix)

import numpy as np

A = np.array([[1, 2], [3, 4]])
B = np.array([[5, 6], [7, 8]])
Transpose

A transpose = A.T

Element-wise multiplication
C_elementwise = A * B

Matrix multiplication

A@B
print("Transpose:\n", A transpose)

C_matrix =

print("Element-wise
multiplication:\n", C_elementwise)
print("Matrix multiplication:\n",
C_matrix)

Output

Transpose:
1 3
2 4
Element-wise multiplication:
5 12
21 32
Matrix multiplication:
19 22
43 50

Output
Transpose:
[[1 3]
[2 4]]
Element-wise multiplication:
[[512]
[21 32]]
Matrix multiplication:
[[19 22]
[43 50]]

Table 2.133: Example 2.1 code in MATLAB and Python

e Example 2.2: Concatenate two strings, convert to uppercase, and find

the position of a substring:

MATLAB code

Python code

stril 'Hello';

str2 = 'World';

% Concatenate strings

combined str = [strl, ' ', str2];
% Convert to uppercase
upper_str = upper(combined_str);
% Find position of substring
pos = strfind(combined str,
"World"');

disp('Concatenated string:'),
disp(combined_str)
disp('Uppercase string:'),
disp(upper_str)

disp('Position of "World":'),
disp(pos)

strl 'Hello"
str2 = 'World'
Concatenate strings

combined str = strl + + str2
Convert to uppercase

upper_str = combined_str.upper()
Find position of substring

pos = combined str.find('World")

print("Concatenated string:",
combined str)

print("Uppercase string:",
upper_str)

print('Position of "World":', pos)

Output

Concatenated string:

Hello World

Uppercase string:

HELLO WORLD

Position of "World":
7

Output

Concatenated string: Hello World
Uppercase string: HELLO WORLD
Position of "World": 6

Table 2.134: Example 2.2 code in MATLAB and Python

o Example 2.3: Define variables of different types and display them:

MATLAB code

Python code

% Defining variables
intVar = 10;

floatVar = 3.14;

by default in MATLAB)

strVar = 'Hello';
(character array)

% Integer

% String

% Displaying variables

% Float (double

Defining variables
int_var = 10

Integer

float var = 3.14
Float

str_var = "Hello"
String

disp(intvar) # Displaying variables

disp(floatVvar) print(int_var)

disp(strVvar) print(float_var)
print(str_var)

Output Output

1o 10

3.1400 3.14

Hello Hello

Table 2.135: Example 2.3 code in MATLAB and Python

o Example 2.4: Demonstrate different data types (integers, floats, and

strings) and check their types:

MATLAB code

Python code

% Data types in MATLAB
intVar = 5;

Integer

floatVar = 2.718;
Floating-point

charVar = 'MATLAB';
String (character array)
% Checking types

Data types in Python
int var = 5

Integer

float var = 2.718
Float

str_var = "Python"
String

Checking types

disp(class(intVar))))

disp(class(floatVar)) pr%nt(type(lnt_var))

disp(class(charVar)) prmeiypeiidesie ven))
print(type(str_var))

Output Output

double <class 'int'>

double <class 'float'>

char <class 'str'>

Table 2.136: Example 2.4 code in MATLAB and Python
o Example 2.5: Create an array/list, perform indexing, and modify an

element:

MATLAB code

Python code

% Define an array
array = [1, 2, 3, 4, 5];
% Indexing and modifying an element

Define a list

array = [1, 2, 3, 4, 5]

Indexing and modifying an
element

second_element = array(2); % Access

seeael ellament second_element = array[1]
Access second element

array(3) = 10; % Modify third
array[2] = 10

element -)

. # Modify third element

Zafaal iz print(array)

Output Output

1 2 10 4 5 [1, 2, 10, 4, 5]

Table 2.137: Example 2.5 code in MATLAB and Python
e Example 2.6: Concatenate strings, convert to uppercase, and find the

position of a substring:

MATLAB code

Python code

% Define and concatenate strings
strl 'Hello, ';

str2 'MATLAB' ;

combinedStr = [strl, str2];

% Convert to uppercase and find
substring position

Define and concatenate strings
strl = "Hello, "

str2 "Python"

combined str = strl + str2

Convert to uppercase and find
substring position

upperStr = upper(combinedStr); upper_str = combined str.upper()
position = strfind(combinedStr, position =

'"MATLAB'); combined_str.find("Python")
disp(combinedStr) print(combined_str)
disp(upperStr) print(upper_str)

disp(position) print(position)

Output Output

Hello, MATLAB
HELLO, MATLAB
8

Hello, Python
HELLO, PYTHON
7

Table 2.138: Example 2.6 code in MATLAB and Python

e Example 2.7: Create a heterogeneous collection and access its

elements:

MATLAB code

Python code

% Define a cell array with mixed
types

cellArray = {42,
% Access elements
cellArray{1};
cellArray{2};

'Data’, [1, 2, 3]};
first_element =
second_element =
disp(cellArray)
disp(first_element)
disp(second_element)

Define a list with mixed types
mixed list = [42, "Data", [1, 2,
311

Access elements

mixed list[0]
mixed_list[1]

first_element =
second_element =
print(mixed list)

print(first_element)
print(second_element)

Output
[42]
42
Data

'Data’ [1x3 double]

Output

[42, 'Data‘', [1, 2, 3]]
42

Data

Table 2.139: Example 2.7 code in MATLAB and Python
e Example 2.8: Create a structure or dictionary, add fields/keys, and

access values:

MATLAB code

Python code

% Define a structure with multiple
fields

student.name = 'Alice’;
student.age = 21;
student.grade = 85;

% Access and modify fields
disp(student.name)

Define a dictionary with
multiple keys

student = {
"name": "Alice",
"age": 21,
"grade": 85

}

student.age = 22; # Access and modify values

disp(student) print(student["name"])
student["age"] = 22
print(student)

Output Output

Alice Alice

name: ‘'Alice’ {"'name’: 'Alice’, ‘age': 22,
scores: [95 88 92] 'grade': 85}

age: 22

grade: 85

Table 2.140: Example 2.8 code in MATLAB and Python

e Example 2.9: Define variables for radius and height of a cylinder, and
calculate its volume and surface area:

MATLAB code

Python code

% Define variables for radius and
height

radius 5;
height = 10;
% Calculate volume and surface area

volume = pi * radius”2 * height;
surface_area = 2 * pi * radius *
(radius + height);

disp(['Volume of the cylinder: ',
num2str(volume)]);

disp(['Surface area of the cylinder:

, num2str(surface_area)]);

import math
Define variables for radius and

height
radius = 5
height = 10

Calculate volume and surface area

volume = math.pi * radius**2 *
height

surface area = 2 * math.pi * radius
* (radius + height)

print(f"Volume of the cylinder:
{volume}")

print(f"Surface area of the
cylinder: {surface_area}")

Output

Volume of the cylinder: 785.3982
Surface area of the «cylinder:
471.2389

Output

Volume of the cylinder:
785.3981633974483

Surface area of the cylinder:
471.23889803846896

Table 2.141: Example 2.9 code in MATLAB and Python

e Example 2.10: Create a matrix (2D array) representing points on a
plane, calculate the distance of each point from the origin, and store the

results in an array:

MATLAB code

Python code

% Define points as a matrix (rows
are points)

points = [3, 4; 5, 12; 8, 15];

% Calculate distances from the
origin
distances =
2));
disp('Points:');

sqrt(sum(points.”2,

import numpy as np
Define points as a 2D array

points = np.array([[3, 4], [5, 12],
[8, 15]1)

Calculate distances from the
origin

distances =

np.sqrt(np.sum(points**2, axis=1))

disp(points); print("Points:\n", points)
disp('Distances from origin:'); print("Distances from origin:\n",
disp(distances); distances)
Output Output
Points: Points:
3 4
3 4
= @ [L]
g8 15 [5 12]
Distances from origin: [8 15]]
1; Distances from origin:
17 [5. 13. 17.]

Table 2.142: Example 2.10 code in MATLAB and Python

Conclusion

As per this chapter, readers will learn that how to get the knowledge of
MATLAB and Python basics. The defining the variables, arrays, matrices in
MATLAB were discussed. In Python, data types in Python, string, list,
tuple, dictionary, set in Python were also discussed.

In the next chapter, basic operations in MATLAB and Python will be
elaborated.

Exercises

1. Define an integer variable x with the value 50, a float y with the value
3.14, and a string z with the value "Programming is fun!". Display all
three variables.

2. Refer to the following questions:

a. Determine and display the data type of the variables x =42, y =7.5,
and z = "Hello World!".

b. Convert the integer 100 into a float and the float 9.8 into an integer.
Display the results.

3. Perform the following operations on two numbers, @ = 15 and b = 4:
a. Addition

b. Subtraction

c. Multiplication

d. Division

e. Modulus (remainder)

f. Exponentiation
4. Refer to the following:

a. Check if x = 25 is greater than y = 18. Display the result.

b. Check if conditions x > 10 and y < 20 are true. Display the result.
5. Refer to the following:

a. Create a 3X33 times 3X33 matrix containing numbers from 1 to 9.

b. Access and display the element in the second row, third column of
the matrix.

c. Replace the first row of the matrix with [10, 11, 12].
d. Compute the sum of all elements in the matrix.

6. Define a string = "Learning MATLAB and Python". Perform the
following:

a. Extract the word "MATLAB".

b. Convert the string to uppercase.

c. Replace "MATLAB" with "Coding" in the string.
1. Refer to the following:

a. Create a list/cell array containing the following elements:

e An integer: 25
e A string: "Data"
o A float: 7.89

b. Access the second element of the list/cell array.
c. Add a new element "Science" to the list/cell array.
2. Refer to the following:

a. Create a dictionary/structure with the following key-value pairs:

e Name: "John"
e Age: 30

e Occupation: "Engineer"

b. Access and display the value of the Occupation key/field.
c. Add a new key/field Salary with the value 75000.
3. Do the following matrix operations.

a. Normalize a 3X3 matrix by dividing each element by the sum of all
elements in the matrix.

b. Compute the mean of each column in the matrix.
c. Transpose the matrix and display the result.
4. Perform the following:

Create a 3X3 matrix:

Compute:
e The determinant of the matrix.
e The transpose of the matrix.
1. Define a variable z as z = 1.5; then evaluate:

e z¥ — 2023 —12.82% + 9.45
z+2 z3-18%
3 %224-5.5

o Z

6. Define the variables a = 2.5, b = 6.5 and ¢ = g,bz; d= i;n, then
+a

evaluate:

E,IJ

RN

a2l

7. Verify the following trigonometric identities for y = 75°

2 tan(x)
— tan?(x))

_tan (2x) = i

1-2cosx—-3cos*x _ 1-3cosx

. sin? x 1—-cos x

8. Create a program that takes the width = 18 foot and length = 20 foot of
a room. Calculate and display the room's area in foot and meter as well.

9. Write a program that calculate the perimeter of the given shape field,
where the radius of the circle is 10 cm and the rectangle is 10 cm by 25
cm. Ignore the lines inside the figure.

10. Write a program should that calculate and display the sum of all
integers from 1 to n . You can compute the sum of the first n positive
integers using the formula:

(n+1)
2

Sum=nx

Implement this formula in your program to find and display the result
for n = 100.

The sum must be 5050.

11. Imagine you just opened a new savings account with a 4 percent
interest rate per year. The interest you earn is added to your account at
the end of each year. Write a program that starts by taking money
deposited in the account. Then, calculate and show how much money
will be in the savings account after 1, 2, and 3 years. Make sure to
round each amount to 2 decimal places. Use the formula for

A=Px (141t

Where:
* 4 = the amount in the account after t years
* P = the initial amount deposited (principal)
 r = annual interest rate (as a decimal, so 4% becomes 0.04)
* t = number of years
For this scenario, you will calculate 4 for ¢t = 1, 2 and 3 using the same
initial deposit P.
12. Calculatea = cos(x), b = sin(x)and ¢ = tan(x) for different x:

T b
x =Dhxrx==1x==1%=—x=1q0=72T
2 4 6

The values can be created for each given value of x. Another way is to
T & Ir
2 46

combine the values in a vector define as: x = [0 T 27

13. Create the following matrix by typing one command. Do not type
individual elements explicitly.

14. Create a program that reads a measurement in feet from the user.
Then, display the equivalent distance in inches, yards, and miles. Use
the following conversion factors:

e | foot= 12 inches
e | yard =3 feet
e | mile = 5280 feet

Join our Discord space

Join our Discord workspace for latest updates, offers, tech happenings
around the world, new releases, and sessions with the authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/

CHAPTER 3

Basic Operations in MATLAB and
Python Languages

Introduction

This chapter mentions a comparative approach to basic operations in MATLAB
and Python. MATLAB has its own strengths in matrix operations and
mathematical calculations, which i1s why it is useful in engineering and
scientific fields. Python is considered for its easy-to-implement approach and
readability, which 1s why it is widely used across various domains. This chapter
will provide the basic knowledge in these languages, which will give readers
the techniques to handle common programming tasks efficiently.

In this chapter, we will explore the fundamental operations and functionalities
of two powerful programming languages: MATLAB and Python. MATLAB is
widely recognized for its strength in numerical computations, particularly in
arithmetic and matrix operations, making it a preferred tool for engineers and
scientists. We will delve into its capabilities in performing basic arithmetic
operations, advanced matrix manipulations, and logical operations that are
essential for data analysis and algorithm development. On the other hand,
Python, known for its versatility and ease of use, offers a broad range of
functionalities, including arithmetic operations, string manipulation, list
operations, and a variety of built-in functions that make it suitable for general-
purpose programming and data handling. By understanding these core concepts
in both MATLAB and Python, you will gain a solid foundation to tackle a wide

array of computational problems and enhance your programming skills across
different domains.

Structure

The structure of this chapter is as follows:
3.1 MATLAB
e 3.2 Python
e 3.3 Comparison of examples via MATLAB and Python

Objectives

In this chapter, readers will be introduced to the foundational skills necessary
for performing arithmetic operations in MATLAB and Python. These skills
include understanding how to execute basic mathematical calculations such as
addition, subtraction, multiplication, and division, as well as more complex
operations. This chapter will also explore matrix operations, a critical
component of MATLAB. Readers will learn how to create, manipulate, and
perform operations on matrices, including matrix addition, subtraction, and
multiplication. They will also explore specialized matrix functions such as
determinant calculation and inverse finding. This section aims to equip readers
with the ability to handle matrix-based data efficiently, which is essential for
various scientific and engineering applications.

Logical operations form another key focus of this chapter. Readers will gain an
understanding of how to use logical operators to perform comparisons and
make decisions based on conditions.

In the Python-specific sections, readers will explore string manipulation
techniques. This includes learning how to concatenate strings, extract
substrings, replace characters, and format strings for output. Additionally,
readers will become familiar with various string methods that allow for
efficient text processing and manipulation.

List operations in Python will also be covered, providing readers with the
knowledge to create, access, modify, and manipulate lists. They will learn
about list indexing, slicing, appending, and sorting, as well as how to use list
comprehensions for more concise and readable code. By the end of this section,

readers will be adept at using lists to store and manage collections of data
effectively.

3.1 MATLAB

MATLAB is a powerful numerical computing tool widely used in engineering,
science, and mathematics for efficient mathematical operations. Section 3././
Arithmetic operations cover basic computations on scalars and arrays, while
Section 3.1.2 Matrix operations highlights matrix manipulation essential for
linear algebra, signal processing, and machine learning. The section, 3.71.3
Logical operations, explores comparisons and logical operators for condition
evaluation and data filtering. These capabilities make MATLAB a versatile
platform for numerical analysis and algorithm development.

3.1.1 Arithmetic operations in MATLAB

MATLAB gives knowledge regarding the fundamental arithmetic operations.
These operations are useful for basic computations and form the base of
complex calculations in scientific tasks.

MATLAB provides comprehensive support for fundamental arithmetic
operations, which serve as the foundation for complex mathematical
computations. These operations are essential for performing calculations on
both scalars and arrays, making MATLAB a powerful tool for numerical
analysis and scientific computing. The basic arithmetic operations include the
following:

e Addition (+): Adds two numbers or corresponding elements of arrays.

e Subtraction (-): Computes the difference between numbers or array
elements.

e Multiplication (*): Multiplies scalars or performs matrix multiplication
when used with arrays.

e Element-wise Multiplication (.*): Multiplies corresponding elements of
arrays.

e Division (/ and \): Computes division for scalars and matrices, including
right division (/) and left division (\).

e Element-wise Division (./ and .\): Divides corresponding elements of
arrays.

e Exponentiation (*): Raises a number or matrix to a power.

* Element-wise Exponentiation (.*): Applies exponentiation to each
element of an array individually.

The addition of two numbers in MATLAB can be defined as follows:
e Addition (+): It provides the basic addition between numbers or matrices:

a =5; Output:
b = 3; 8
C =a + b;
disp(c);
Table 3.1 : Addition between numbers

The addition of two matrices in MATLAB is as follows:
A=[1, 2; 3, 4]; Output:
B = [5) 6; 7, 8]: 6 8
C=A+B; 10 12
disp(C);

Table 3.2 : Addition between matrices
e Subtraction (-): It provides the simple subtraction between numbers or

matrices.
The subtraction of two numbers in MATLAB 1s as follows:
a = 10; Output:
b = 4; 6
cC=a - b;
disp(c);
Table 3.3 : Subtraction between numbers
The subtraction of two matrices in MATLAB is displayed as follows:
A=1[7, 5 3, 9]; Output:
B =12, 1; 4, 6]; 5 4
C=A- B; 1
disp(C);

Table 3.4 : Subtraction between matrices

e Multiplication (¥): It provides matrix multiplication, requiring compatible
matrix dimensions:

A=[1, 2, 3;
4, 5, 6];

Output:

58 64

B =[7, 8 139 154
9, 10;
11, 12];
C=A*B;
disp(C);
Table 3.5 : Matrix multiplication

e Element-wise multiplication (.*)
multiplication, useful for arrays:

It provides element-by-element

A=[1, 2, 3;

4, 5, 6];
B=1[7, 8, 9;

10, 11, 12];
C=A .*B;
disp(C);

Output:
7 16 27
40 55 72

Table 3.6 : Element-by-element multiplication

* Division (/ and ./): Division and element-wise division.

o Matrix division (/ and \ operators): Matrix division operates under the

following specific rules:

= Right division (/): Divides the matrix on the left by the matrix or

scalar on right.

= Left division (\): Divides matrix on the right by matrix or scalar on

the left:

A = [10, 20; Output:

30, 40]; 2.8571 1.4286
35 2 58 0 10.0000

3, 4]1;
% Right matrix division Output:
Cl1 =A/ B; % Equivalent to A * inv(B) |15.7143 17.1429
displedys -4.2857 ~2.8571
% Left matrix division
C2 = B \ A; % Equivalent to inv(B) * A
disp(C2);

Table 3.7 : Matrix division

o Element-wise division (./ operator): Element-wise division divides
every element in one matrix by the corresponding elements in another
matrix of the same size. The operator for this is ./.

The element-wise division is mentioned as follows:

A = [10, 20, 30; Output:

40, 50, 60]; 5 5 6
B =1[2, 4, 5; 5 5

8, 10, 12];
C=A./ B;
disp(C);

Table 3.8 : Element-wise division
e Exponentiation (* and .*): Matrix and element-wise exponentiation.

o Matrix exponentiation (* operator): Matrix exponentiation (e.g., A"2)
needs a square matrix and includes raising the matrix to a specified
power by implementing the matrix multiplications:

A=1[2, 3; Output:
1, 4]; 7 18
= N . % : *
C. A~ 2; % Equivalent to A * A 6 19
disp(C);

Table 3.9 : Matrix exponentiation

o Element-wise exponentiation (. operator): Element-wise exponentiation
1s performed using the .” operator, and it raises each individual element of
the matrix to the specified power. This operation can be applied to non-
square matrices as well:

A=1[2, 3; Output:
1, 4]; 4 9

% Element-wise exponentiation 1 16

D=A."2;

disp(D);

Table 3.10: Element-wise exponentiation

3.1.2 Matrix operations in MATLAB

MATLARB?’s strength lies in its matrix-oriented operations, allowing users to
handle arrays and matrices efficiently.

In this subsection, various matrix operations are described in detail:
e Matrix transpose ('): Transposing matrices to switch rows and columns:

A=[1, 2, 3; Output:
4, 5, 6]; 1 4

% Transpose of matrix A 2 5

B=A";

disp(B); 3 6

Table 3.11 : Transpose of matrix
e Inverse (inv): Calculate the inverse of a matrix:

A= [4, 7; Output:
2, 6]; 0.6000 -0.7000
% inverse of matrix A -0.2000 0.4000

A _inv = inv(A);

disp(A_inv);

Table 3.12: Inverse of matrix
e Determinant (det): Useful for solving linear systems:

A= [4, 7; Output:
2, 6]; 10

% determinant of matrix A

det_A = det(A);

disp(det_A);

Table 3.13 : Determinant of matrix

e Other matrix functions: size, length, zeros, ones, diag, detailed as
follows:

o size: Determines the dimensions of a matrix. The size function returns
the number of rows and columns in a matrix:

A=[1, 2, 3; Output:

4, 5, 6]; Rows: 2, Columns: 3
% size of matrix A
[rows, cols] = size(A);

disp(['Rows: ', num2str(rows), ', Columns:
', num2str(cols)]);

Table 3.14 : Size of matrix

o length: Returns the largest dimension of the matrix. The length function
gives the maximum of the row and column dimensions, which is useful
for vectors or finding the longest dimension of a matrix:

B =1[1, 2, 3, 4]; Output:

% length of matrix B Length: 4
len = length(B);

disp(['Length: ', num2str(len)]);

Table 3.15: Length of matrix
o zeros: Creates a matrix of all zeros. The zeros function is used to create

a matrix filled with zeros. You
arguments:

specify the dimensions of the matrix as

% 3x3 matrix of zeros
Z = zeros(3, 3);
disp(Z);

Output:
(%] 0 (%]
(%] 0 0
0 0 0

Table 3.16 : Matrix of zeros

o ones: Creates a matrix of all ones. The ones function generates a matrix
filled with ones, with specified dimensions:

% 2x4 matrix of ones
0 = ones(2, 4);
disp(0);

Output:
1 1 1 1
1 1 1 1

Table 3.17 : Matrix of ones

o diag: Creates a diagonal matrix

or extracts the diagonal of a matrix. The

diag function has two main uses:

» Creating a diagonal matrix from a vector:

v =[1, 2, 3];

% 3x3 diagonal matrix with elements from

vector v
D = diag(v);
disp(D);

Output:
1 (%]
(%] 2
(%] 0

Table 3.18 : Diagonal matrix
= Extracting the diagonal elements from a matrix:

2, 3;

5, 6;

8, 91;

% diagonal elements of matrix A
diag A = diag(A);

disp(diag A);

Output:
1

Table 3.19 : Extracting the diagonal elements from a matrix

e Special types of matrices:

o Random matrix (rand and randn): MATLAB provides functions to

create random matrices, like:

* rand: Generates a matrix with uniformly distributed random values

between 0 and 1:

% 3x3 matrix with random values between
© and 1

R = rand(3, 3);
disp(R);

Output:
0.8147

0.9058
0.1270

0.9134 0.2785
0.6324 0.5469
0.0975 0.9575

Table 3.20: Random matrix

» randn: Generates a matrix with normally distributed random values

(mean 0, standard deviation 1):

% 3x3 matrix with random values from a
normal distribution

R_normal = randn(3, 3);
disp(R_normal);

Output:

2.7694
-1.3499
3.0349

0.7254
-0.0631

0.7147

-0.2050
-0.1241
1.4897

Table 3.21: Matrix with normally distributed random values

o Hilbert matrix (hilb): The Hilbert matrix is a specific type of square

matrix with elements defined as H(i,j) =

i+j-1°

It is often used in

numerical analysis:
% 4x4 Hilbert matrix Output:
H = hilb(4); 1.0000 0.5000 0.3333 0.2500
disp(H); 0.5000 0.3333 0.2500 0.2000
0.3333 0.2500 0.2000 0.1667
0.2500 0.2000 0.1667 0.1429

Table 3.22 : Hilbert matrix
o Pascal matrix (pascal): The Pascal matrix is a symmetric positive

definite matrix. It can be created using the Pascal function:

% 4x4 Pascal matrix Output:
P = pascal(4); 1 1 1 1
. 1 2 3 4
disp(P);
p(P) 1 3 6 10
1 4 10 20
Table 3.23 : Pascal matrix
o Tridiagonal matrix:
n =4; Output:
% Size of tridiagonal matrix 3 1))
maianiag = [3, 3, 3, 3]; 7 3 2 0
% Main diagonal elements
upper _diag = [1, 2, 3]; 0 8 3 3
% Upper diagonal elements 0 0 9 3

lower_diag = [7, 8, 9];

% Lower diagonal elements

% tridiagonal matrix

T custom = diag(main_diag) +
diag(upper_diag, 1) + diag(lower_diag,
-1);

disp(T_custom);

Table 3.24 : Tridiagonal matrix
o Pentadiagonal matrix:

n =25; % Size of pentadiagonal matrix Output:

% Define each diagonal with custom values 10 3 1 %))
Taianiag = [10, 10, 10, 10, 10]; -3 10 3 0
% Main diagonal

upper_diagl = [3, 3, 3, 3]; e -3 10 3 1
% First upper diagonal (%] 0 -3 10 3
upper_diag2 = [1, 1, 1]; 0 0 -3 10

% Second upper diagonal
lower_diagl = [-3, -3, -3, -3];
% First lower diagonal
lower_diag2 = [-1, -1, -1];
% Second lower diagonal
% pentadiagonal matrix
P = diag(main_diag) + diag(upper_diagl, 1) +
diag(upper_diag2, 2) ...

+ diag(lower_diagl, -1) +
diag(lower_diag2, -2);
disp(P);

Table 3.25 : Pentadiagonal matrix

3.1.3 Logical operations in MATLAB

Logical operations help control program flow and perform condition checks.
Logical operations in MATLAB play a crucial role in decision-making, data
filtering, and control flow in programming. These operations allow users to
compare values, evaluate conditions, and implement logical expressions in
various computational tasks.

MATLAB supports both relational and logical operators.

Relational operators (<, >, <=, >=, ==, ~=) compare values and return logical
true (1) or false (0), making them essential for conditional statements, loops,
and array filtering.

Logical operators (&, |, ~, xor) are used to perform element-wise logical
operations, enabling complex decision-making processes in algorithms. These

operators are widely applied in data processing, image analysis, machine
learning, and optimization tasks.

MATLAB also provides functions like any (), all(), and find() to enhance
logical operations by evaluating and extracting specific conditions from arrays.
Understanding logical operations is essential for efficient programming, as they
allow users to manipulate large datasets, implement control structures, and
automate decision-based workflows effectively.

e Comparison operators: <, >, <=, >=, == ~= for comparing values.
In MATLAB, comparison operators are used to compare values or

expressions, returning logical values (true or false) as a result. Here is a
summary of MATLAB’s comparison operators:

o Less than (<): Returns true if the left operand is less than the right

operand:
a =5; Output:
b = 10; result =
result = a< b % result will be true 1

Table 3.26 : Comparison operator <
o Greater than (>): Returns true if the left operand is greater than the right

operand:
a = 10; Output:
b =5; result =
result = a > b % result will be true 1

Table 3.27: Comparison operator >

o Less than or equal to (<=): Returns true if the left operand is less than
or equal to the right operand:

a =5; Output:
b =05; result =
result = a <= b % result will be true 1

Table 3.28 : Comparison operator <=

o Greater than or equal to (>=): Returns true if the left operand is greater
than or equal to the right operand:

a = 10; Output:
b =25; result =
result = a >= b % result will be true 1

Table 3.29 : Comparison operator >=

o Equal to (==): Returns true if the left operand is equal to the right

operand:
a =5; Output:
b =25; result =
result = a == b % result will be true 1

Table 3.30: Comparison operator ==
o Not equal to (~=): Returns true if the left operand is not equal to the

right operand:
a =>5; Output:
b = 10; result =
result = a ~=b % result will be true 1

Table 3.31: Comparison operator ~=

e Logical operators: & |, and ~ for AND, OR, and NOT operations. In
MATLAB, logical operators are used to perform logical operations on
Boolean values (true or false). Here is a brief overview of MATLAB’s
main logical operators:

o Logical AND (&): Performs an element-wise AND operation. It returns
true if both operands are true, and false otherwise:

a = true;
b = false;
result = a &b

% result will be false

Output:

result =
(%)

Table 3.32: Logical operator AND

o Logical OR (]): Performs an element-wise OR operation. It returns true if
at least one operand is true, and false otherwise:

a = true;
b = false;
result = a | b

% result will be true

Output:

result =
1

Table 3.33 : Logical operator OR

o Logical NOT (~): Negates a logical value. It returns true if the operand
1s false, and false if the operand is true:

a = true;
result = ~a;
false

% result will be

Output:
result =

| e |

Table 3.34 : Logical operator NOT
Short-circuit AND (&&): The && operator evaluates the second operand
only if the first operand is true (since false && any_value is always false).

If the first operand is false, MATLAB skips evaluating the second operand
because the result is already determined as false:

X = 5; Output:

if (x > @) && (10 / x > 1) Both conditions are true
disp('Both conditions are true');

else
disp('At least one condition is

false');

end

Table 3.35 : Short-circuit AND

Short-circuit OR (||): The | | operator evaluates the second operand only
if the first operand is false (since true | | any_value is always true). If the
first operand is true, MATLAB skips evaluating the second operand
because the result is already determined as true:

X =

if (x ==0) || (10 / x > 1) At least one condition is true

else

end

0; Output:
disp('At least one condition is true');

disp('Both conditions are false');

Table 3.36 : Short-circuit OR

Using logical arrays: MATLAB supports logical indexing, allowing
operations based on conditions.

In MATLAB, logical arrays (or logical indexing) are powerful tools that
allow you to manipulate or access array elements based on specified
conditions. This technique enables you to perform operations on specific
elements of an array by creating a logical array, where true indicates that
an element meets the condition and false indicates it does not.

Let us now see how logical indexing works.

A logical array is an array of true or false values. You can create it by applying
a conditional expression to an array. MATLAB then uses this logical array to
index into the original array, allowing you to select, modify, or perform
operations only on elements that meet a condition.

e Creating a logical array: Let us see how to create a logical array in

MATLAB:

A=1[1, 3,5, 7, 9];
logicalArray = A > 4

Output:
logicalArray =
(] () 1 1 1

Table 3.37 : Logical array

e Using a logical array to select elements: Using a logical array to select
elements allows you to filter or extract specific values from an array or
matrix based on a condition, enabling efficient data manipulation and

analysis:

selectedElements = A(A > 4)

Output:
selectedElements =
5 7 9

Table 3.38 : Logical array to select elements

e Modifying elements based on a condition: Modifying elements based on
a condition involves applying logical indexing to update or replace values
in an array or matrix that meet specific criteria, streamlining data

processing tasks:

A(A > 4) =0
% Sets elements greater than 4 to ©

Output:
A =

1

3 0 0 0

Table 3.39 : Modification of elements based on a condition

e Counting elements that meet a condition: Counting elements that meet a
condition can be done using sum(logical_condition) to find how

many values satisfy the condition:

count = sum(A > 4)

% Counts the number of elements greater than 4

Output:

count =
(7}

Table 3.40: Counting of elements as per condition

e Combining conditions: You can combine conditions using logical

operators (& |, ~):

A = [1J 3, 5, 7, 9];

selectedElements = A((A > 4) & (A < 8))

Output:
selectedElements =
5 7

Table 3.41: Combining conditions

3.2 Python

Python is a widely used, high-level programming language known for its
simplicity, readability, and extensive libraries that support diverse
computational tasks. It is popular in scientific computing, data analysis,
machine learning, and software development due to its powerful built-in
functions and user-friendly syntax. Unlike MATLAB, which is primarily
designed for numerical computing, Python offers a more versatile programming
environment, supporting arithmetic, logical, string, and list operations
efficiently. Python’s arithmetic operations include addition, subtraction,
multiplication, division, exponentiation, and integer division, making it a
reliable tool for mathematical computations. It also excels in string
manipulation, providing methods for concatenation, slicing, formatting, and
transformation, which are essential for handling text-based data. Additionally,
Python’s dynamic list structures support indexing, slicing, sorting, and various
modifications, enabling efficient data handling. Python's flexibility, open-
source nature, and extensive ecosystem of libraries like NumPy, pandas, and
Matplotlib make it a preferred choice for engineers, data scientists, and
researchers looking to develop robust and scalable computational solutions
across multiple domains.

3.2.1 Arithmetic operations in Python
Python also supports basic arithmetic operations, using the following similar
symbols to MATLAB:

e Addition (+)- Addition of two numbers in Python: In Python, the
addition of two numbers is performed using the + operator, which returns
the sum of the operands:

a=5+3 Output:
print(a) 8

Table 3.42 : Arithmetic operation addition

e Subtraction (-): In Python, the subtraction of two numbers is performed
using the - operator, which returns the difference between the operands:

b =10 - 2 Output:
print(b) 8

Table 3.43 : Arithmetic operation subtraction

e Multiplication (*): In Python, the multiplication of two numbers is
performed using the * operator, which returns the product of the operands:

c=4%*3 Output:
print(c) 12

Table 3.44 : Arithmetic operation multiplication
e Division (/): Python performs float division by default:

d =10/ 3 Output:
print(d) 3.3333333333333335

Table 3.45 : Arithmetic operation division

Python performs float division by default, so even if the numbers divide
evenly, the result will be a float.

e Integer division (//): Divides and rounds down to the nearest integer:

e=10// 3 Output:
print(e) 3

Table 3.46 : Integer division
Integer division returns the quotient rounded down to the nearest integer.
e Exponentiation (**):

f =2 **3 Output:
print(f) 8

Table 3.47 : Exponentiation

3.2.2 String manipulation in Python

Python offers versatile string handling, which i1s not a strong feature in
MATLAB. It provides powerful and flexible string handling capabilities,
making it an ideal choice for text processing and manipulation.

Unlike MATLAB, Python treats strings as immutable sequences, allowing
efficient indexing, slicing, and modification using built-in methods. Common
operations include concatenation (+), repetition (*), and slicing ([:]) to extract
substrings.

Python also offers advanced string formatting techniques such as f-strings,
.format(), and % formatting for dynamic text generation. Additionally,
various string methods like .upper(), .lower(), .replace(), .find(),
and .split() simplify text transformations, searching, and splitting tasks.

Regular expressions (re-module) further enhance string manipulation, enabling
complex pattern matching and data extraction. These capabilities make Python
well-suited for natural language processing, data cleaning, and software
development, where text-based data is prevalent.

Let us look at them in detail:

e Concatenation: Combining strings using +:

first_name = "John" Output:
last_name = "Doe" John Doe
full name = first_name + " " + last_name

print(full _name)

Table 3.48 : Concatenation of strings
» Slicing: Extracting substrings with str[start:end]:

text = "Hello, World!" Output:
substring = text[7:12] World

Extracts characters from index 7 up to,
but not including, index 12

print(substring)

Table 3.49 : Slicing from string
e Formatting: Using £"{}", .format(), or % for dynamic strings.

o f-strings (Python 3.6+): A modern and efficient string formatting
method using {} placeholders within an f-prefixed string, allowing
direct variable interpolation:

name = "Alice" Output:
age = 30 Hello, Alice! You are 30 years old.

message = f"Hello, {name}! You are
{age} years old."

print(message)

Table 3.50: F-string

o .format() method: A versatile string formatting approach that replaces
placeholders {} with specified values using the . format () function:

name = "Alice" Output:
age = 30 Hello, Alice! You are 30 years old.
message = "Hello, {}! You are {} years

old.".format(name, age)

print(message)

Table 3.51 : .format() method

0 % formatting: An older string formatting method in Python that uses
format specifiers (e.g., %s, %d) to embed values into a string:

name = "Alice" Output:
age = 30 Hello, Alice! You are 30 years old.
message = "Hello, %s! You are %d

years old." % (name, age)
print(message)

Table 3.52 : % formatting

e Common string methods: upper(), lower(), replace(), find(),
and split():
o upper(): Converts the string to uppercase:

text = "hello" Output:
uppercase_text = text.upper() HELLO
print(uppercase_text)

Table 3.53 : String method upper()
o lower(): Converts the string to lowercase:

text = "HELLO" Output:
lowercase_text = text.lower() hello

print(lowercase_text)

Table 3.54 : String method lower ()
o replace(): Replaces a substring with another string:

text = "Hello, World!" Output:
new_text = text.replace("World", Hello, Python!
"Python")

print(new_text)

Table 3.55 : String method replace()
o find(): Returns the index of the first occurrence of a substring (or -1 if

not found):
text = "Hello, World!" Output:
position = text.find("World") 7
print(position)

Table 3.56 : String method find()
Explanation: In this example, “World” starts at index 7 in the original

string.
o split(): Splits the string into a list of substrings based on a specified

delimiter:
text = "apple,banana, cherry" Output:
fruits = text.split(",") ["apple', 'banana', 'cherry']
print(fruits)

Table 3.57 : String method split()

Explanation: Here, split(",") separates the text at each comma,
creating a list of fruits.

3.2.3 List operations in Python

Lists in Python are dynamic, supporting indexing, slicing, and various
operations. Lists in Python are flexible and dynamic data structures that allow
efficient storage, modification, and retrieval of elements. They support
indexing (positive and negative) for accessing specific elements and slicing to
extract sublists.

Python lists can store heterogeneous data types, including numbers, strings, and
even other lists (nested lists). Common operations include appending
(append()), extending (extend()), inserting (insert()), and removing
clements (remove(), pop(), del). Lists can be sorted (sort()), reversed
(reverse()), and iterated efficiently using loops or list comprehensions.
Additionally, functions like 1en(), min(), max(), and sum() provide quick
insights into list contents. With built-in methods for searching (index(),
count()), modifying, and transforming data, lists play a fundamental role in
Python programming, particularly in data processing, numerical computations,
and algorithm development. Let us look at the details:

e Creating lists:

o Creating an empty list: Creating an empty list in Python 1s done using
empty square brackets, e.g., my_list = []:

empty _list = [] Output:

print(empty_list) [1

Table 3.58 : Creation of an empty list

o Creating a list with initial elements: Creating a list with initial
elements in Python involves placing the elements inside square brackets

separated by commas:

numbers = [1, 2, 3, 4, 5] Output:
print(numbers) [1, 2, 3, 4, 5]
fruits = [“apple”, “banana”, “cherry”]

[fapple’, ¢‘banana’, €‘cherry’]

print(fruits)

Table 3.59 : Creation of a list with initial elements

o Creating a list with mixed data types: Creating a list with mixed data
types in Python is done by including elements of different types (e.g.,
integers, strings, floats) within square brackets:

mixed_list = [1, “hello”, 3.14, True] Output:
print(mixed_list) [1, ‘hello’, 3.14, True]

Table 3.60 : Creation of a list with mixed data types

o Creating a list from a range: Creating a list from a range in Python is
achieved using the 1ist () function with range():

range_list = list(range(1, 6)) # Creates |Output:
a list of numbers from 1 to 5 [1, 2, 3, 4, 5]

print(range_list)

Table 3.61 : Creation a list from a range
0 Creating a list using list comprehension: Creating a list using list
comprehension in Python involves defining a concise expression inside
square bracket:

squares = [x**2 for x in range(l, 6)] Output:
print(squares) [1, 4, 9, 16, 25]

Table 3.62 : Creation a list using list comprehension

o Creating a nested list (list of lists): Creating a nested list (list of lists) in
Python involves placing lists as elements inside another list:

matrix = [[1, 2, 3], [4, 5, 6], [7, 8, |Output:
211 [[1, 2, 31, [4, 5, 6], [7, 8, 9]]
print(matrix)

Table 3.63 : Creation of a nested list

o Converting other data types to a list: Converting other data types to a
list in Python is a common operation that allows for flexible data
manipulation. For instance, a string can be converted to a list using
list(string), which breaks the string into individual characters.

Similarly, a tuple or set can be transformed into a list using the 1ist()
function, preserving the order of elements. This conversion is
particularly useful when you need to modify or iterate over data
structures that are originally immutable or unordered. By converting to a
list, you gain access to a wide range of list-specific methods and
operations, enhancing your ability to manage and process data
effectively.

= String to list: In Python, converting a string to a list can be done
using list(string), which splits the string into individual
characters and stores them as elements in a list:

text = “hello” Output:
char_list = list(text) [‘h’, ‘e’, €1°, €1°, ‘0’]
print(char_list)

Table 3.64 : String to list conversion
= Tuple to list: In Python, converting a tuple to a list is done using
list(tuple), which creates a new list with the same elements as
the original tuple:

tuple_data = (1, 2, 3) Output:
list data = list(tuple_data) [1, 2, 3]
print(list_data)

Table 3.65 : Tuple to list conversion

o Creating a list with duplicate elements: In Python, you can create a list
with duplicate elements by simply repeating values within square

brackets:
duplicates = [“apple”] * 3 Output:
print(duplicates) [fapple’, €apple’, ‘apple’]

Table 3.66 : Creation of a list with duplicate elements
0 Creating a list using the append() method: In Python, you can create
and populate a list using the append() method, which adds elements
one at a time to the end of the list:

dynamic_list = [] Output:
dynamic_list.append(1) [1, 2, 3]
dynamic_list.append(2)
dynamic_list.append(3)
print(dynamic_list)

Table 3.67: Creation of a list using the append() method
e Indexing and slicing: Accessing specific elements or portions, like:

o Basic indexing: The concept of basic indexing in list is mentioned as
follows:

= Accessing a single element: Use square brackets [] with the index
of the item you want to access:

Note: Python indexing starts at 0.

My list = [10, 20, 30, 40, 50] Output:
first_element = my_list[0] 10
print(first_element)

Table 3.68 : Accessing a single element from list
= Accessing the last element: Use -1 as the index:

last_element = my list[-1] Output:
print(last_element) 50

Table 3.69 : Accessing the last element from list
o Slicing: Extracting a portion of a list or string.

» Basic slicing: 1ist[start:end] extracts elements from the start
index up to, but not including, the end index:

my list = [10, 20, 30, 40, 50] Output:
subset = my_list[1:4] [20, 30, 409]
print(subset)

Table 3.70: Basic slicing from list
* Omitting start or end: If you omit start, slicing starts from the

beginning.
Start_from_beginning = my_list[:3] Output:
print(start_from_beginning) [10, 20, 30]

Table 3.71: Omitting start or end in list
If you omit the end, slicing goes to the end of the list:

end_to_last = my_list[2:] Output:
print(end to last) [30, 40, 50]

Table 3.72 : End to last in list

= Using negative indices: You can use negative indices to slice from
the end of the list:

last_two_elements = my_list[-2:] Output:
print(last_two_elements) [40, 50]

Table 3.73 : Negative indices in list
o Step in slicing: 1list[start:end:step]
» SKipping elements: The step parameter defines the interval between
elements in the slice:

my list = [10, 20, 30, 40, 50] Output:
every_other = my_list[::2] [10, 30, 50]

print(every other)

Table 3.74 : Skipping elements in list
= Reversing a list: You can reverse a list by using a negative step:

reversed_list = my_list[::-1] Output:
print(reversed_list) [50, 40, 30, 20, 10]

Table 3.75 : Reversing a list

e Indexing and slicing strings: The following are the codes for indexing
and slicing the strings:

text = “Python” Output 1:
Accessing a single character P
first_char = text[0]
print(first_char)

Table 3.76 : Indexing and slicing strings
For more information refer to the following table:

text = “Python” Output 2:
Slicing a substring yth
substring = text[1:4]

print(substring)

Table 3.77 : Slicing a substring
The following is the code regarding reversing the string in Python:

text = “Python” Output:
Reversing the string nohtyP
reversed_text = text[::-1]

|print(reversed_text)

Table 3.78 : Reversing the string

e Multidimensional indexing (for lists of lists): For multidimensional lists
(e.g., matrices), use multiple indices to access specific elements.

Matrix = [[1, 2, 3],
[4, 5, 6],

[7, 8, 9]]

element = matrix[1][2]

print(element)

Output:
6

Table 3.79 : Multidimensional indexing

e Appending and extending:

o Appending: Adding a single element to the end of a list with append():

my list = [1, 2, 3]
my list.append(4)
print(my_list)

Output:
[1, 2, 3, 4]

Table 3.80: Appending in list

o String appending:

words = [“hello”, “world”]
words.append(“Python”)
print(words)

Output:
[‘hello’, ‘world’, ‘Python’]

Table 3.81 : String appending

o Extending: Adding multiple elements to the end of a list with
extend(). The extend() method allows you to add each element of
another iterable (e.g., list, tuple) to the end of the list:

My list = [1, 2, 3]
my_list.extend([4, 5, 6])
print(my_list)

Output:
[1J 2) 3) 4) 5, 6]

Table 3.82 : Extending a list

= Extending by a tuple:

fruits = [“apple”, “banana”]
fruits.extend((“cherry”, “date”))

You can extend with a tuple

print(fruits)

Output:

[“apple’,
‘date’]

‘banana’, ‘cherry’,

Table 3.83 : Extending by a tuple
» Key differences between append() and extend():

o append() adds its argument as a single element to the end of the list,
resulting in a nested structure if you append another list:

my list = [1, 2, 3] Output:
my list.append([4, 5]) [1, 2, 3, [4, 5]]
print(my_list)

Table 3.84 : append()

o extend() iterates over its argument and adds each element
individually to the list, which means it is flat and not nested:

my list = [1, 2, 3] Output:
my list.extend([4, 5]) [1, 2, 3, 4, 5]
print(my_list)

Table 3.85 : extend()
* Removing elements: remove(), pop(), and del

o remove(): Removes the first occurrence of a specified value from the
list. remove() searches for the first matching element in the list and
removes it. If the element is not found, it raises a ValueError:

My list = [10, 20, 30, 20, 40] Output:
my_list.remove(20) [10, 30, 20, 40]
Removes the first occurrence of 20
print(my_list)

Table 3.86 : remove()

o pop(): Removes an element at a specific index and returns it. pop() is
commonly used to remove an item at a given index. If no index is
specified, it removes the last element by default. It also returns the
removed element, allowing you to use or store it:

my list = [10, 20, 30, 40, 50] Output:
last_element = my_list.pop() 50
It will remove last element [10, 20, 30, 40]

print(last_element)
print(my_list)

Table 3.87 : pop()

Following is the code about removal of element at index 1 in a list:

specific_element = my_list.pop(1)

It will remove element at index 1
print(specific_element)
print(my_list)

Output:
20

[10, 30, 40]

Table 3.88: Removal of element at index 1
o del: Removes an element or a slice of elements from a list.

The del statement is a more general-purpose way to delete an element
at a specific index or a slice of elements. Unlike pop(), it does not

return the removed element.

My list = [10, 20, 30, 40, 50]

del my list[1]

It will delete element at index 1
print(my_list)

Output:
[10, 30, 40, 50]

Table 3.89: del statement
Deleting a slice of elements in list is provided via the following code:

Deleting a slice of elements

del my list[1:3]

It will delete elements from index 1
up to, but not including, index 3
print(my_list)

Output:
[10, 50]

Table 3.90: Deleting a slice of elements

e Key points:

o remove(): Use to remove the first occurrence of a specific value.

o pop(): Use to remove an element at a specific index and get that element.

o del: Use for deleting an element or a slice without returning anything.
e Sorting and reversing: sort(), sorted(), and reverse():
o sort(): Sorts a list in place (modifies the original list).

sort() sorts the elements of the list in ascending order by default. You
can also specify reverse=True to sort in descending order. This

method modifies the original list and does not return a new list.

Sorting in ascending order is mentioned via the following code:

my list = [5, 2, 9, 1, 7]
my_list.sort()

Output:
[1, 2, 5, 7, 9]

It will sort in ascending order
print(my_list)

Table 3.91: Sorting iﬁ ascending order

Sorting in descending order is mentioned via the following code:

my list.sort(reverse=True)
It will sort in descending order
print(my_list)

Output:
[9, 7, 5, 2, 1]

Table 3.92 : Sorting in descending order

o sorted(): Returns a new sorted list, leaving the original list unchanged.
sorted() creates a new sorted list from the original list and does not
modify the original list. It also accepts reverse=True to sort in

descending order.

The sorted list code in Python is as follows:

my list = [5, 2, 9, 1, 7]
sorted_list = sorted(my_list)

It will sort in ascending order
print(sorted_list)

print(my_list)

Output:
[1) 2, 5, 7} 9]
[5) 2.’ 9.’ 1.’ 7]

Table 3.93 : Sorted list
Sorting in descending order of code in Python is noted as follows:

my list = [5, 2, 9, 1, 7]
It will sort in descending order

sorted_descending = sorted(my_list,
reverse=True)

print(sorted_descending)

Output:
[9, 7, 5, 2, 1]

Table 3.94 : Sorting in descending order

o reverse(): Reverses the order of elements in place. reverse() reverses
the elements of the list in place (modifies the original list) and does not

sort them. It does not return a new list:

my list = [5, 2, 9, 1, 7]
my_list.reverse()

Reverses the order of elements
print(my_list)

Output:
[7, 1, 9, 2, 5]

Table 3.95 : Reverses the order of elements

e Key points:
o sort(): It is used to sort a list in place (modifies the original list).

o sorted(): It is used to create a new sorted list without modifying original
list.

o reverse(): It is used to reverse the order of elements in place without
sorting.

3.2.4 Basic built-in functions in Python

Python gives various built-in functions to handle data types and perform
common tasks:
 len(): Returns the length of an object. 1en() gives number of items in an
object, such as; list, string, or tuple:

my list = [1, 2, 3, 4, 5] Output:
list_length = len(my_list) 5
print(list_length)

Table 3.96 : len() of list
The code for the length of a string in Python is as follows:

my_string = “Hello, world!” Output:
string_length = len(my_string) 13
print(string_length)

Table 3.97 : len() of string

» type(): It checks the type of a variable. type() provides the data type of a
variable, which is helpful to understand or to debug code:

number = 42 Output:
print(type(number)) <class ‘int’>
text = “Python” <class ‘str’>
print(type(text)) <class ‘list’>
items = [1, 2, 3]

print(type(items))

Table 3.98 : type()

o print(): Outputs data to the screen. print() is used to display data to
console, which is essential to check results or to debug code:

name = “Alice” Output:
age = 30 Name: Alice Age: 30

print(“Name:”, name, “Age:”, age) ‘

Table 3.99 : print()
The use of print () is described as follows with an example:

name = “Alice” Output:

age = 30 Alice is 30 years old.
Using formatted strings (f-strings)
print(f”{name} is {age} years old.”)

Table 3.100: print()

e sum(): Returns the sum of a list of numbers. sum() calculates the total of
all numbers in an iterable, such as a list or tuple:

numbers = [10, 20, 30, 40] Output:
total = sum(numbers) 100
print(total)

Table 3.101 : sum() in list
Sum with a starting value code is mentioned as follows:

numbers = [10, 20, 30, 40] Output:
Sum with a starting value 110
total with start = sum(numbers, 10)
print(total with_start)

Table 3.102 : Sum with a starting value
e Key points
o len(): Determines the number of elements in an object.
o type(): Checks the type of a variable.
o print(): Displays data to the console.
o sum(): Adds up all elements in a numeric iterable.

3.3 Comparison of examples via MATLAB and
Python

In this section, some examples are discussed that explain the comparative
approach in MATLAB and Python. This comparison will give readers a full
insight into the languages MATLAB and Python:

e Example 3.1: Perform addition, subtraction, multiplication, division,

exponentiation, and modulus on two numbers:

MATLAB

Python

% Defining variables

a = 12;

b = 5;

% Arithmetic operations
addition = a + b;
subtraction = a - b;
multiplication = a * b;
division = a / b;
exponentiation = a ~ b;
modulus = mod(a, b);

% Display of results
disp([‘Addition: ¢,
num2str(addition)]);

disp([‘Subtraction: ¢,
num2str(subtraction)]);

disp([“Multiplication: ¢,

num2str(multiplication)]);

disp([‘Division: ¢,
num2str(division)]);
disp([‘Exponentiation:

num2str(exponentiation)]);

disp([‘Modulus: ¢,
num2str(modulus)]);

<

J

Defining variables

a =12

b=>5

Arithmetic operations
addition = a + b
subtraction = a - b

multiplication = a * b
division = a / b
exponentiation = a ** b

modulus = a % b

Display of results
print(“Addition:*, addition)
print(“Subtraction:”, subtraction)

print(“Multiplication:”,
multiplication)
print(“Division:”, division)
print(“Exponentiation:”,
exponentiation)
print(“Modulus:”, modulus)

MATLAB output:
Addition: 17

Subtraction: 7
Multiplication: 60
Division: 2.4
Exponentiation: 248832
Modulus: 2

Python output:
Addition: 17

Subtraction: 7
Multiplication: 60
Division: 2.4
Exponentiation: 248832
Modulus: 2

Table 3.103 : Example 3.1 coding

e Example 3.2: Define two matrices, perform addition, subtraction, element-

wise multiplication, and matrix multiplication:

MATLAB

Python

% Defining matrices
A=1[12; 34];

import numpy as np
Defining matrices

B=1[56; 7 8]; A = np.array([[1, 2], [3, 4]])
% Matrix operations B = np.array([[5, 6], [7, 8]1)
matrix_addition = A + B; # Matrix operations
matrix_subtraction = A - B; matrix_addition = A + B
elementwise_multiplication = A .* B; matrix_subtraction = A - B
matrix multiplication = A * Bj; elementwise multiplication = A * B
% Display of results matrix_multiplication = A @ B
disp(‘Matrix Addition:’); # Display of results
disp(matrix_addition); print(“Matrix Addition:\n”’,
disp(‘Matrix Subtraction:’); matrix_addition)
disp(matrix_subtraction); print(“Matrix Subtraction:\n”,

matrix_subtraction)
print(“Element-wise
Multiplication:\n”,

elementwise multiplication)
print(“Matrix Multiplication:\n”,
matrix_multiplication)

disp(‘Element-wise Multiplication:’);
disp(elementwise_multiplication);
disp(‘Matrix Multiplication:’);
disp(matrix_multiplication);

MATLAB output: Python output:
Matrix Addition: Matrix Addition:
6 8 [[6 8]
10 12 [10 12]]
Matrix Subtraction: Matrix Subtraction:
-4 -4 [[-4 -4]
-4 -4 [-4 -4]]
Element-wise Multiplication: Element-wise Multiplication:
5 12 [[5 12]
21 32 [21 32]]
Matrix Multiplication: Matrix Multiplication:
19 22 [[19 22]
43 50 [43 50]]

Table 3.104 : Example 3.2 coding

o Example 3.3: Check if a variable a is equal to, not equal to, greater than,
or less than or equal to another variable b:

MATLAB Python

% Defining variables # Defining variables
a=717; a=7

b = 3; b=23

% Logical operations # Logical operations
isEqual = (a == b); is equal = (a == b)

isNotEqual = (a ~= b); is _not_equal = (a != b)

isGreaterThan = (a > b);
isLessThanOrEqual = (a <= b);
% Display of results
disp([‘Is Equal: ¢,
num2str(isEqual)]);

disp([‘Is Not Equal: ¢,
num2str(isNotEqual)]);

disp([‘Is Greater Than: ¢,
num2str(isGreaterThan)]);
disp([‘Is Less Than or Equal: ¢,
num2str(isLessThanOrEqual)]);

is_greater_than = (a > b)
is_less_than_or_equal = (a <= b)

Display of results

print(“Is Equal:”, is_equal)
print(“Is Not Equal:”, is_not_equal)
print(“Is Greater Than:”,

is _greater_ than)

print(“Is Less Than or Equal:”,
is_less_than_or_equal)

MATLAB output:

Is Equal: o

Is Not Equal: 1

Is Greater Than: 1

Is Less Than or Equal: ©

Python output:
Is
Is
Is
Is

Equal: False

Not Equal: True

Greater Than: True

Less Than or Equal: False

Table 3.105 : Example 3.3 coding

o Example 3.4: Write a function in both MATLAB and Python that takes a
list or array of integers and returns the sum of even numbers and the sum
of odd numbers separately:

MATLAB Python

function [evenSum, oddSum] = def sum_even_odd(numbers):

sum_even_odd(numbers)
% Sum even and odd numbers

Sum even and odd numbers
even_sum = sum(num for num in

evenSum = sum(numbers(mod(numbers, numbers if num % 2 == @)

2) ==0)); odd_sum = sum(num for num in
oddSum = sum(numbers(mod(numbers, 2) [numbers if num % 2 != 0)

~= 0)); return even_sum, odd_sum

end

Table 3.106 : Example 3.4 coding

o Example 3.5: Write a function that removes duplicates from a list or array
and returns the unique elements. Implement this in both MATLAB and
Python:

MATLAB Python

function unique_elements = def remove _duplicates(lst):

remove_duplicates(array) # Remove duplicates

% Remove duplicates return list(set(lst))

unique_elements = unique(array);

end

Table 3.107 : Example 3.5 coding

e Example 3.6: Write a function to find and return the maximum and
minimum values in a list or array. Implement this in both MATLAB and

Python:

MATLAB

Python

function [maxValue, minValue] =
find_max_min(array)

% Find maximum and minimum

values
maxValue = max(array);
minValue = min(array);
end

def find_max_min(1lst):

Find maximum and minimum values
max(1lst)

min(1lst)

return max_value, min_value

max_value =
min_value =

Table 3.108 : Example 3.6 coding

e Example 3.7: Write a function that takes a list or array of numbers and
returns a new list where each number is squared. Implement this in both

MATLAB and Python:

MATLAB

Python

function squaredArray =

square_elements(array)
% Square each element in the array
squaredArray = array .” 2;

end

def square_elements(lst):

Square each element in the
list

return [x ** 2 for x in 1st]

Table 3.109 : Example 3.7 coding
e Example 3.8: Write a function to calculate the factorial of a given number.

Implement this in both MATLAB
recursion for simplicity:

and Python using loops rather than

MATLAB

Python

function result = factorial loop(n)
result = 1;
for I = 1:n
result = result * i;
end
end

def factorial loop(n):
result = 1
for i in range(1, n + 1):
result *= i

return result

Table 3.110: Example 3.8 coding

e Example 3.9: Write a function that takes a list or array of numbers and
returns the mean and standard deviation:

MATLAB Python

function [meanValue, stdDev] = import math

mean_std(numbers) def mean_std(numbers):
% mean and standard deviation # mean
meanValue = mean(numbers); mean_value = sum(numbers) /
stdDev = std(numbers); len(numbers)

end

standard deviation

variance = sum((x-- mean_value) **
2 for x in numbers) / len(numbers)

std_dev = math.sqrt(variance)

return mean_value, std_dev

Table 3.111: Example 3.9 coding

o Example 3.10: Write a function that calculates the greatest common
divisor (GCD) of two numbers using the Euclidean algorithm:

MATLAB Python
function gcdResult = calculate _gcd(a, b) |[def calculate gcd(a, b):
% Euclidean algorithm for GCD # Euclidean algorithm for GCD
while b ~= 0 while b != 0:
temp = b; a, b=b, a%b
b = mod(a, b); return a
a = temp;
end

gcdResult = a;
end

Table 3.112: Example 3.10 coding

o Example 3.11: Write a function that takes the coefficients of a quadratic
equation and returns its roots:

MATLAB Python

function rootsResult = import cmath

solve_quadratic(a, b, c) def solve quadratic(a, b, c):
% discriminant # discriminant

discriminant = b”"2-- 4 * 3 * c;
if discriminant > ©
% Two real roots
rootsResult = [(-b +
sqrt(discriminant)) / (2 * a), (-
b-- sgrt(discriminant)) / (2 * a)];
elseif discriminant
% One real root
rootsResult = -b / (2 * a);
else

% Complex roots

rootsResult = [(-b + sqrt(-
discriminant) * 1i) / (2 * a), (-

discriminant = b**2-- 4 * 3 * ¢
if discriminant > O:
Two real roots

rootl = (-b +
discriminant**@.5) / (2 * a)
root2 = (-b--

discriminant**@.5) / (2 * a)
return rootl,
elif discriminant

root2

One real root

-b / (2 * a)
return root,

else:

root =

- iy - % 14
b-- sgrt(-discriminant) 1i) / (2 # Complex roots

)] q rootl = (-b +
en cmath.sgrt(discriminant)) / (2 * a)
end
root2 = (-b--

cmath.sqrt(discriminant)) / (2 * a)
return rootl,

Table 3.113 : Example 3.11 coding

e Example 3.12: Menu-driven calculator based on the user's operation
choice in MATLAB and Python.

root2

Note: MATLAB uses the switch-case statement to handle multiple conditions in a structured
readable way. Python introduced a similar construct called match-case in Python 3.10, enab
pattern-matching capabilities akin to switch in other languages. Unlike traditional sw
statements, Python’s match-case supports structural pattern matching, allowing for m
powerful and expressive conditions. When working across both languages, recognizing tl
syntactic and functional parallels can improve code readability and portability.

MATLAB Python
MATLAB Example - Using switch-case |Python Example - Using match-case
(Python 3.10+)
operation = 'Add'; operation = 'Add'
a = 10; a =10
b = 5; b =25
switch operation match operation:
case 'Add’ case 'Add':
result = a + b; result = a + b
disp(['Result: ', print(f"Result: {result}")
num2str(result)]); case 'Subtract':
case 'Subtract’ result = a - b

result = a - b;

disp(['Result: ',
num2str(result)]);

case 'Multiply’

print(f"Result: {result}")
case 'Multiply’:

result = a * b

print(f"Result: {result}")

result = a * b; case 'Divide’:
disp(['Result: ', if b 1= 9:
num2str(result)]); result =a / b
case 'Divide print(f"Result: {result}")
if b ~= 0 T
result = a / b; print("Error: Division by
disp(['Result: ', zero"
num2str(result)]); case
ellse print("Invalid operation")
disp('Error: Division
by zero');
end
otherwise

disp('Invalid operation');
end

Table 3.114 : Example 3.12 coding

e Example 3.13: User roles determine what access level a user has:
'admin', 'editor’, 'viewer' in MATLAB and Python:

MATLAB
MATLAB Example - Using switch-case

Python

Python Example - Using match-case
(Python 3.10+)

role = 'editor’';
switch role
case 'admin'

disp('Access
control');

granted: Full

case 'editor'
disp('Access granted: Can edit
content');
case ‘'viewer'
disp('Access granted: Read-
only");
otherwise
disp('Access denied: Unknown
role');

end

role = 'editor'

match role:
case 'admin':

print("Access Full

control")

granted:
case 'editor':

print("Access Can

edit content")

case 'viewer':

granted:

print("Access granted: Read-

only")
case _

print("Access denied:

Unknown role")

Table 3.115: Example 3.13 coding

Conclusion

This chapter provided a comprehensive exploration of the core functionalities
of MATLAB and Python, two powerful programming languages widely used in
computational tasks. In MATLAB, the focus was on arithmetic operations,
matrix manipulations, and logical operations, highlighting its strength in
numerical computing and data analysis. Python, on the other hand,
demonstrated its versatility through arithmetic operations, string manipulation,
list operations, and basic built-in functions, showcasing its adaptability for
general-purpose programming and data handling. By understanding these
fundamental concepts, readers gain a solid foundation to tackle a wide range of
computational problems, from mathematical modeling to text processing and
beyond. The comparison of examples in MATLAB and Python further
emphasized the unique strengths of each language, enabling users to choose the
right tool for their specific needs. With practice exercises included, this chapter
aims to reinforce learning and equip readers with the skills to apply these
concepts effectively in real-world scenarios.

In the next chapter, readers will understand the concept of control flow and
structures in MATLAB and Python.

Exercises

1. Write a program that prompts the user for their name and then displays a

personalized greeting message.

Hint:

e Input: Enter your name: AMPRA

¢ Output: Dear AMPRA welcome to the word of programming!

1. Develop a program that calculates the area of a cylinder given the radius of
the base and length as input from the user. The formula for the area of a
cylinder is 7t 7* h.

2. Create a program that calculates the sum of integers from 1 to n, where 7 1s

a positive integer provided by the user. Employ the formula sum = n(ntl)

for the calculation.

3. A bakery sells two types of cookies: chocolate chip (weighing 25 grams
each) and oatmeal raisin (weighing 35 grams each). Write a program that
takes the number of each type of cookie ordered as input and calculates the
total weight of the cookie order.

4. Write a program to convert measurements from feet and inches to
centimeters. The program should take the number of feet and inches as
separate inputs from the user and perform the conversion (1 foot = 12
inches, 1 inch = 2.54 centimeters).

5. Create a program that takes two integers, a and b, as input and performs
the following operations, displaying the result of each: the sum of a and b,
the difference when b is subtracted from a, the product of a and b, the
quotient when a is divided by b, the remainder when a is divided by b, and
the base-10 logarithm of a.

6. Write a program that takes three integers as input from the user and
displays them in sorted order from smallest to largest. Use the min and
max functions to identify the smallest and largest values and calculate the
middle value accordingly.

7. Create two vectors of length 10. The first vector should contain the first six
multiples of three, and the second vector should contain six terms of an
arithmetic progression with a first term of 2 and a common difference of 3.

Perform and display the results of the following operations:

Element-wise addition, element-wise subtraction (second vector from the
first), element-wise multiplication, element-wise division (first vector by
the second), and raising each element of the first vector to the second
power.

8. Consider a vector C = [13, 26, 28, 15, 12] representing marks in different
subjects. Calculate and display a new vector D containing the modified
marks after applying the following transformations: adding two marks to
each value, doubling the second subject's marks, halving the fourth
subject's marks, and then calculating the difference between the original
marks (C) and the updated marks (D).

9. Given the matrix C =[1 3 4; 56 7, 5 0 9], write code to extract and
display: the element in the first row and second column, the elements of
the third row in the first and second columns, the element accessed by C(6)
(explain the indexing), all elements of the second row, and the elements in
the second and third rows of the first and second columns.

10.

11.

13.

14.

15.

16.

17.

18.

Using linspace, create a vector x containing the first ten multiples of three.
Then, create three new vectors derived from x : » (containing the first 5
elements of x), s (containing elements of with indices from 5 to 7
inclusive), and ¢ (containing elements of x with even indices). Display the
vectors 7, s, and .

Construct the following matrix 4 using a single command (avoiding
explicit element-by-element entry):

A=
00000
0011020
002826
003632

Given the vector X = [8, 10, 2, 5, 4, 6, 17, 32], perform and display the
following:

a. Create a vector Y containing the elements of X in reverse order.
b. Find the indices of elements in X that are greater than 2.
c. Create a vector Z containing elements of X that are smaller than 4.

Generate the following matrices using concise commands: a 4X4 matrix of
ones, a 4X1 matrix of zeros, and a 3X2 matrix where all elements are
equal to 0.78.

Write a program that takes an integer » as input and generates an n X n
diagonal matrix. The diagonal elements should be the squares of the
integers from 1 to n, and all other elements should be zero. Display the
resulting matrix.

Generate two 3X3 matrices with random integers between 1 and 10
(inclusive). Calculate and display the element-wise sum of these matrices,
as well as the sum of all elements within each individual matrix.

Write a program that takes two matrices as input (assuming they are
compatible for multiplication). Perform matrix multiplication and display
the resulting product matrix. Include error handling to ensure the matrices
are compatible for multiplication.

Create a 4X4 matrix populated with random floating-point numbers
between 0 and 1. Calculate and display the average of each row and the
average of each column of this matrix.

19. Write a program that takes a square matrix as input. Calculate and display
both the transpose of the matrix and its trace (the sum of its diagonal
elements).

20. Write a program that takes a matrix (of any size) and a scalar value as
input. Multiply each element of the matrix by the scalar value and display
the resulting scaled matrix.

Join our Discord space
Join our Discord workspace for latest updates, offers, tech happenings around
the world, new releases, and sessions with the authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/

CHAPTER 4

Control Flow and Structures in
MATLAB and Python

Introduction

In this chapter, we will explore the basic concepts of control flow and
structures in MATLAB and Python, two widely used programming
languages in scientific computing, data analysis, and engineering. Control
flow refers to the order in which individual statements, instructions, or
function calls are executed or evaluated within a program. By mastering
control flow, you will be able to create more efficient programs that can
make decisions and repeat tasks based on specific conditions.

The chapter is divided into three main sections, the first two focusing on
MATLAB and Python languages, respectively, and the third one is related
to their common examples. In the MATLAB section, you will learn about
conditional statements and loops.

In the Python section, you will explore similar concepts but with some
syntactic differences. Python uses conditional statements like if, elseif, and
else to implement decision-making logic. Additionally, Python's loops, such
as; for and while, allow you to iterate over sequences like lists, tuples, and
dictionaries, or to repeat code until a condition becomes false. Python's
flexibility and readability make it a powerful tool for implementing control

flow in a wide range of applications.

By the end of this chapter, you will have a solid understanding of how to
use conditional statements and loops in MATLAB and Python. You will be
able to write programs that can make decisions, handle repetitive tasks, and
process data efficiently. Whether you are analyzing data, developing
algorithms, or automating workflows, these skills will be invaluable in your
programming journey.

Structure

In this chapter, we will learn the following topics:

e 4.1 Control flow in MATLAB
e 4.2 Control flow in Python
¢ 4.3 Common examples in MATLAB and Python

Objectives

In this chapter, you will gain practical skills in implementing control flow
structures in both MATLAB and Python, enabling you to write efficient and
dynamic programs. For MATLAB, you will learn how to use conditional
statements (if, elseif, else) to execute code based on logical conditions and
how to employ loops (for, while) to iterate over arrays or repeat tasks until a
condition is met. In Python, you will master conditional statements (if, elif,
else) for decision-making and explore loops (for, while) to iterate over
sequences like lists or perform repetitive tasks until a condition becomes
false. By the end of this chapter, you will be equipped to handle data
processing, automate workflows, and implement logical decision-making in
these languages, enhancing your ability to solve real-world programming
challenges.

4.1. Control flow in MATLAB

Control flow in MATLAB refers to the order in which statements and

commands are executed within a program. It allows you to control the
execution of code based on specific conditions or to repeat tasks efficiently.
MATLAB provides several constructs for implementing control flow,
including conditional statements and loops. Conditional statements, such
as if, elseif, and else, enable you to execute different blocks of code
depending on whether certain logical conditions are true or false. For
example, you can use an if statement to check if a variable meets a specific
criterion and then perform calculations or display results accordingly.
Loops, such as for and while, allow you to repeat a block of code multiple
times. A for loop is typically used to iterate over a range of values or
elements in an array, while a while loop continues executing as long as a
specified condition remains true. These control flow structures are essential
for tasks like data analysis, algorithm implementation, and automation,
making MATLAB a powerful tool for scientific and engineering
applications. By mastering control flow in MATLAB, you can write more
efficient and flexible programs.

4.1.1 Conditional statements in MATLAB

MATLAB provides the if, elseif, and else constructs for the execution of
code based on logical conditions. Such statements allow for branching
execution paths depending on the evaluation of logical expressions.

Conditional statements in MATLAB are fundamental for implementing
decision-making logic in your programs. The if statement evaluates a
logical expression and executes a block of code only if the condition is true.
The elseif statement allows you to check additional conditions if the initial
if condition is false, providing multiple branching paths. The else statement
serves as a catch-all, executing a block of code when none of the preceding
conditions are met. These constructs are particularly useful for handling
complex logic, such as categorizing data, validating inputs, or controlling
program behavior based on dynamic conditions. By combining if, elseif,
and else, you can create robust and flexible programs that adapt to varying
scenarios.

Syntax:

if condition
% It will be executed if condition is true

elseif another_condition

% It will be executed if second condition is true
else

% It will be executed if none of above conditions
are true
end

Let us look at an example:
Example 4.1: Check if a number is positive, negative, or zero:
number = input('Enter a number: ');
if number > ©

fprintf('The number is positive.\n');
elseif number < ©

fprintf('The number is negative.\n');
else

fprintf('The number is zero.\n');
end

Let us look at the outputs:

e Output 1:

Enter a number: 5

The number is positive.
e Output 2:

Enter a number: -1

The number is negative.
e Output 3:

Enter a number: ©

The number is zero.

Explanation: The if block is evaluated first. If the condition is true, the
corresponding block of code is executed. If the condition is false, MATLAB
moves to elseif block, and finally to the else block if all other conditions are
false. This structure ensures that only one block is executed.

4.1.2 Loops in MATLAB
Loops are used to execute a block of code multiple times. MATLAB

supports for loops for iterating over arrays and while loops for condition-
based iteration.

For loop

A for loop iterates over a sequence of values, often specified by a range or
an array. In MATLAB, the for loop is a control flow structure used to
repeatedly execute a block of code for a specified number of iterations. It is
particularly useful when you need to perform operations on each element of
an array, iterate over a sequence of values, or repeat a task a fixed number
of times. The loop begins with the keyword for, followed by a loop variable
that takes on values from a defined range or array, and ends with the end
keyword. For example, for i = 1:10 will execute the loop 10 times,
with the variable i taking values from 1 to 10. Inside the loop, you can
perform calculations, manipulate data, or call functions using the loop
variable. The for loop is highly efficient for tasks like matrix operations,
numerical computations, and data processing, making it a cornerstone of
MATLAB programming for handling repetitive tasks systematically.

Syntax:

for variable = start:increment:end
% Code to execute

end

Example 4.2: Sum of the first 10 natural numbers:

sum = 0;
for i = 1:10

sum = sum + 1i;
end

fprintf('The sum of the first 10 natural numbers is
%d.\n", sum);

The output is as follows:

The sum of the first 10 natural numbers is 55.

Explanation: The loop runs from 1 to 10, incrementing the variable i by 1
in each iteration. The sum is accumulated in the variable sum.

While Loop

A while loop continues execution as long as a specified condition is true.
Syntax:
while condition
% Code to execute
end

Example 4.3: Factorial of a number:

number = input('Enter a number: ');

factorial = 1;

i=1;

while i <= number
factorial = factorial * ij;
i=14+ 1;

end

fprintf('The factorial of %d is %d.\n', number,

factorial);

Output:

Enter a number: 5

The factorial of 5 is 12e@.

Explanation: The loop starts with i = 1 and continues until i exceeds the
input number. The factorial is calculated by multiplying the factorial by 1 in
each iteration.

4.2. Control flow in Python

Control flow in Python refers to the order in which statements and
instructions are executed within a program, allowing you to dictate how
your code behaves under different conditions or how it repeats certain tasks.
Python provides a variety of constructs to manage control flow, including
conditional statements and loops. Conditional statements, such as if,
elseif, and else, enable you to execute specific blocks of code based on
the evaluation of logical conditions. For instance, you can use an if
statement to check whether a variable meets a certain criterion and then

perform actions accordingly. Loops, such as for and while, allow you to
repeat a block of code multiple times. A for loop is typically used to iterate
over sequences like lists, tuples, or strings, while a while loop continues
executing as long as a specified condition remains true. These control flow
structures are essential for tasks like data processing, algorithm
implementation, and automation.

4.2.1 Conditional statements in Python

Python provides the if, elif, and else constructs for conditional
execution. These statements allow for flexible decision-making in the code.
Syntax:
if condition:

Code to execute if condition is true
elif another_condition:

Code to execute if the second condition is true
else:

Code to execute if none of the above conditions
are true

Example 4.4: Check if a number is positive, negative, or zero:
number = float(input('Enter a number: "))
if number > O:
print('The number is positive.')
elif number < 0O:
print('The number is negative.')
else:
print('The number is zero.')

Let us look at the outputs:
e QOutput 1:
Enter a number: 5
The number is positive.
e Output 2:

Enter a number: -1
The number is negative.

e QOutput 3:
Enter a number: ©
The number is zero.

Explanation: The structure is similar to MATLAB's if-elseif-else, but
Python uses elif instead of elseif and requires colons (:) after each
condition.

4.2.2 Loops in Python

Loops are used to execute a block of code repeatedly. Python supports for
loops for iterating over sequences and while loops for condition-based
iteration.

Loops in Python are powerful tools for automating repetitive tasks and
processing collections of data. The for loop is commonly used to iterate
over sequences such as lists, tuples, strings, or ranges, allowing you to
perform operations on each element. On the other hand, the while loop
repeatedly executes a block of code as long as a specified condition remains
true, making it ideal for scenarios where the number of iterations is not
known in advance. Both types of loops can be controlled using statements
like break to exit the loop prematurely or continue to skip the current
iteration and move to the next. By leveraging loops, you can write concise
and efficient code to handle tasks like data manipulation, mathematical
computations, and iterative algorithms.

For loop

A for loop iterates over items in a sequence, such as a list, tuple, or range.
Syntax:

for variable in sequence:
Code to execute

Example 4.5: Sum of first 10 natural numbers:

sum = O Output:
for i in range(1, 11): The sum of the first 10 natural
sum += 1i numbers is 55.

print(f'The sum of the first 10
natural numbers is {sum}.')

Table 4.1 : Example for loop in Python

Explanation: The range function generates a sequence of numbers from 1
to 10. The loop iterates over this range, adding each value to the sum
variable.

While Loop

A while loop continues execution as long as the specified condition
evaluates to true.
Syntax:
while condition:
Code to execute

Example 4.6: Factorial of a number:

number = int(input('Enter a number: ')) Output:
factorial =1 Enter a number: 5

while number > @: The factorial is 120.
factorial *= number

number -= 1
print(f'The factorial is {factorial}.')

Table 4.2 : Example while loop in Python

Explanation: The loop continues until the number becomes zero. In each
iteration, the value of the number is multiplied by the factorial, and the
number is decremented.

4.3. Common examples in MATLAB and Python

Example 4.7: Check if a number is even or odd:

MATLAB: Python:
number = input('Enter a number: '); |[number = int(input('Enter a number:
if mod(number, 2) == 0 "))

fprintf('The number is if number % 2 ==
even.\n'); print('The number is even.')
else else:

fprintf('The number is odd.\n'); print('The number is odd.")

end

MATLAB output:

Enter a number: -2
The number is even.

Python output:

Enter a number: -2
The number is even.

Table 4.3 : Codes for checking whether a number is even or odd

Example 4.8: Fibonacci sequence:

for 1 = 3:n
fib(i) = fib(i-1) + fib(i-2);

MATLAB: Python:

n = input('Enter the number of terms: n = int(input('Enter the number
5 of terms: "))

fib = zeros(1, n); fib = [0, 1]

fib(1) = 0; for i in range(2, n):

fib(2) = 1; fib.append(fib[i-1] + fib[i-

2])

print('Fibonacci sequence:',

2 3

end fib)

fprintf('Fibonacci sequence: ');

disp(fib);

MATLAB output: Python output:

Enter the number of terms: 5 Enter the number of terms: 5
Fibonacci sequence: (%] 1 1|Fibonacci sequence: [0, 1, 1, 2,

3]

Table 4.4 : Codes for Fibonacci sequence

Example 4.9: Finding the Maximum Element in an array:

MATLAB

Python

arr = [3, 1, 4, 1, 5, 9, 2];
arr(1);
2:1ength(arr)

if arr(i) > max_value

max_value

for i

max_value = arr(i);
end
end

fprintf('The maximum value is %d.\n',
max_value);

arr [3, 1, 4, 1, 5, 9, 2]
max_value = arr[0]

for i in arr:

if i > max_value:

max_value = i
print(f'The maximum value is

{max_value}.")

MATLAB output

The maximum value is 9.

Python output

The maximum value is 9.

Table 4.5 : Codes for finding maximum element in an array

Example 4.10: Print the first 10 natural numbers using a loop:

MATLAB Python
for i = 1:10 for i in range(1, 11):
disp(i) print(i)
end
MATLAB output: Python output:
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 10

Table 4.6 : Codes for how to print the first 10 natural numbers
Example 4.11: Calculate the sum of the first 10 natural numbers:

MATLAB Python

sum = 9O; sum = @

for i = 1:10 for i in range(1, 11):
sum = sum + ij; sum += i

end print(sum)

disp(sum);

MATLAB output: Python output:

55 55

Table 4.7 : Codes to calculate the sum of the first 10 natural numbers
Example 4.12: Find the factorial of a number:

for i = 1:number

MATLAB Python
number = input('Enter a number: '); |number = int(input('Enter a number:
factorial = 1; "))

factorial = 1

factorial = factorial * i; for i in range(1, number + 1):
end factorial *= i
disp(factorial); print(factorial)
MATLAB output: Python output:
Enter a number: 5 Enter a number: 5

120 120

Table 4.8 : Codes to find the factorial of a number
Example 4.13: Check if a number is prime:

MATLAB

Python

number = input('Enter a number:

is_prime = true;
for i = 2:sqrt(number)
if mod(number, i) == 0
is prime = false;
break;
end

end
if is prime
disp('Prime");
else
disp('Not Prime');

");

number = int(input('Enter a number:
"))

is prime
for i in range(2, int(number**0.5)
+ 1):

= True

if number % i == 0O:
is_prime = False
break

if is _prime:
print('Prime")
else:
print('Not Prime')

end

MATLAB output: Python output:

Enter a number: 11 Enter a number: 11
Prime Prime

Table 4.9 : Codes to check if a number is prime

Example 4.14: Print a multiplication table for a given number:

fprintf('%d x %d = %d\n',
number, i, number * i);
end

MATLAB Python
number = input('Enter a number: '); |number = int(input('Enter a number:
for 1 = 1:10 "))

for i in range(1, 11):
print(f'{number} x {i} = {number
*i}')

MATLAB output:

Python output:

Enter a number: 5
5x1=35
5x2 =10
5x3 =15
5 x4 =20
5 x5 =25
5 x 6 = 30
5x7 =35
5 x 8 = 40
5 x9 =45
5 x 10 = 50

Enter a number: 5

5x1=35
5x2 =10
5x3 =15
5 x4 =20
5 x5 =25
5 x 6 =30
5x7 =35
5 x 8 = 40
5 x9 =45
5 x 10 = 50

Table 4.10: Codes to print a multiplication table

Example 4.15: Find the minimum element in an array:

MATLAB

Python

arr = [3, 1, 4, 1, 5, 9, 2];
min_value = arr(1);
for i = 2:1length(arr)
if arr(i) < min_value
min_value = arr(i);
end
end
disp(min_value);

arr = [3, 1, 4, 1, 5, 9, 2]
min_value = arr[Q]
for i in arr:
if i < min_value:
min_value = 1
print(min_value)

MATLAB output:
1

Python output:
1

Table 4.11 : Codes to find the minimum element in an array

Example 4.16: Count the number of vowels in a string:

Python

string
for i = 1:1length(str)

count = 0; % Initialize vowel count

MATLAB

str = input('Enter a string: 's'); %
Input string from the user

vowels = 'aeiouAEIOU'; % Define vowels

% Loop through each character in the input

if ismember(str(i), vowels) % Check if

str = input('Enter a string:
")
vowels = 'aeiouAEIOU'
count = 0
for char in str:
if char in vowels:
count += 1

print(count)

the character is a vowel

vowel count
end
end

disp(['Number of vowels: ',
num2str(count)]); % Display the count

count = count + 1; % Increment the

MATLAB output:
Enter a string: coding

Number of vowels: 2

Python output:
Enter a string: coding

2

Table 4.12 : Codes to count the number of vowels in a string

Example 4.17: Check if a number is an Armstrong number:

digit = mod(temp, 10);
sum = sum + digit”3;
temp = floor(temp / 10);

digit = temp % 10

sum += digit**3

MATLAB Python

num = input(‘Enter a number: ¢); num = int(input('Enter a number: "))
sum = 0; sum = 0

temp = num; temp = num

while temp > © while temp > 0:

Enter a number: 153

Enter a number: 153

Armstrong Number Armstrong Number

temp //= 10

?nd if sum == num:

i SUT ==Inum . print('Armstrong Number')
disp('Armstrong Number'); clse:

else print('Not an Armstrong Number')
disp('Not an Armstrong

Number');

end

MATLAB output: Python output:

Table 4.13 : Codes for checking if a number is an Armstrong number

Example 4.18: Find the sum of digits of a number:

MATLAB

Python

num = input(‘Enter a number: ¢);

num = int(input('Enter a number:

sum = 9; "))
while num > © sum = ©

sum = sum + mod(num, 10); while num > @:

num = floor(num / 10); sum += num % 10
end num //= 10
disp(sum); print(sum)
MATLAB output: Python output:
Enter a number: 5 Enter a number: 5

5 5

Table 4.14 : Codes to find the sum of digits of a number
Example 4.19: Find the sum of even numbers in an array:

MATLAB

Python

arr = [3, 1, 4, 1, 5, 9, 2];
sum_even = 0O;
for i = 1:1length(arr)

if mod(arr(i), 2) == 0

sum_even = sum_even +

arr(i);

end
end
disp(sum_even);

arr = [3, 1, 4, 1, 5, 9, 2]

sum_even = sum(i for i in arr if i %
2 == 09)

print(sum _even) # output: 6

MATLAB output:
6

Python output:
6

Table 4.15: Codes to find the sum of even numbers in an array

Example 4.20: Find the sum of odd numbers in an array:

MATLAB

Python

arr = [3, 1, 4, 1, 5, 9, 2];
sum_odd = 0;
for i = 1:1length(arr)

if mod(arr(i), 2) ~= 0

sum_odd = sum_odd +

arr(i);

end
end
disp(sum_odd);

arr = [3, 1, 4, 1, 5, 9, 2]

sum_odd = sum(i for i in arr if i % 2
I= 9)

print(sum_odd)

MATLAB output:

Python output:

19 ‘ 19

Table 4.16 : Codes to find the sum of odd numbers in an array
Example 4.21: Check if a string contains only alphabets:

MATLAB

Python

input('Enter a string: ',

str
's');
if all(isletter(str))

disp('Contains only alphabets');
else

disp('Contains other
characters');

end

str = input('Enter a string: ')
if str.isalpha():
print('Contains only
alphabets"')
else:
print('Contains other

characters"')

MATLAB output:
Enter a string: code

Contains only alphabets

Python output:
Enter a string: code

Contains only alphabets

Table 4.17 : Codes to check if a string contains only alphabets

Example 4.22: Print a pyramid pattern using *:

MATLAB

Python

n =5;
for 1 = 1:n

n 5
for i in range(1, n + 1):

fprintf(%s\n’, repmat(‘*’, 1, print(" " * (n - 1) + "*¥' * (2 *
2*¥i-1)); i- 1))
end
MATLAB output: Python output:
* *
%k k % %k k
% %k k k k % %k %k k k
3k %k %k 3k %k %k %k 3% 3k %k %k 3k %k %k
3k %k %k %k % % %k %k k 3k %k %k % % % %k %k k

Table 4.18 : Codes to print a pyramid pattern using *

Example 4.23: Check if a number is perfect:

MATLAB Python

num = input(‘Enter a number: €); num = int(input('Enter a number: "))
sum = 0; sum = sum(i for i in range(1, num)
for i = 1:num-1

if num % i == 9)

if mod(num, i) == ©
sum = sum + i;

end
end
if sum == num

disp('Perfect Number');
else

disp('Not a Perfect Number');
end

if sum == num:
print('Perfect Number')
else:
print('Not a Perfect Number')

MATLAB output:

Enter a number:
Perfect Number

28

Python output:

Enter a number: 28

Perfect Number

Table 4.19 : Codes for checking if a number is perfect
Example 4.24: Print all perfect numbers in a range:

MATLAB Python
for num = 1:1000 for num in range(1, 1001):
sum = 0; if sum(i for i in range(1, num) if
for 1 = 1:num-1 num % i == @) == num:
if mod(num, i) =f 0 print(num)
sum = sum + i;
end
end
if sum == num
disp(num);
end
end
MATLAB output: Python output:
6 6
28 28
496 496

Table 4.20: Codes to print all perfect numbers in a range
Example 4.25: Print the first n prime numbers:

while count < n

is_prime = true;

MATLAB Python

n = input(‘Enter n: ¢); n = int(input('Enter n: "))
count = 0; count = @

num = 2; num = 2

while count < n:

is prime = True

for i = 2:sqrt(num)
if mod(num, i) ==
is_prime = false;
break;
end
end

for i in range(2, int(num**@.
+ 1):

5)

if num % i ==

is prime False
break

if is_prime:

if is_prime print(num)
disp(num); count += 1
count = count + 1; num += 1
end
num = num + 1;
end
MATLAB output: Python output:
Enter n: 5 Enter n: 5
2 2
3 3
5
2 5
11 7
11

Table 4.21 : Codes to print the first n prime numbers

Example 4.26: Check if two strings are anagrams:

if isequal(sort(strl), sort(str2))

disp('The strings are
anagrams.');

else

disp('The strings are not
anagrams.');

end

MATLAB Python

strl = input('Enter first string: ', [strl = input('Enter first string:
's'); ")

str2 = input('Enter second string: str2 = input('Enter second string:
's'); ")

if sorted(strl) == sorted(str2):

print('The strings are
anagrams. ')

else:

print('The strings are not
anagrams. ')

MATLAB output:
Enter first string: triangle

Enter second string: integral

The strings are anagrams.

Python output:
Enter first string: triangle

Enter second string: integral

The strings are anagrams.

Table 4.22 : Codes to check if two strings are anagrams

Example 4.27: Check if a year is a leap year:

MATLAB

Python

year = input('Enter a year:

")
if mod(year, 4) == 0 & & (mod(year,
100) ~= @ || mod(year, 400) == 0)
disp('Leap year');
else
disp('Not a leap year');
end

year = int(input('Enter a year: '))

if (year % 4 == @ and year % 100 !=
0) or (year % 400 == 0):

print('Leap year')
else:
print('Not a leap year')

MATLAB output:
Enter a year: 2025

Not a leap year

Python output:
Enter a year: 2025

Not a leap year

Table 4.23 : Codes to check if a year is a leap year

Example 4.28: Find the roots of a quadratic equation:

Python

MATLAB

a = input('Enter coefficient a:
b = input('Enter coefficient b:
c = input('Enter coefficient c:

discriminant = b”"2 - 4*a*c;
if discriminant > ©

)
");
");

import cmath

a = float(input('Enter
coefficient a: "))

b = float(input('Enter
coefficient b: "))

Enter coefficient a: 1

tl = (-b t(di imi t
/ (2:Z§. (-b + sgrt(discriminant)) ¢ = float(input('Enter
root2 = (-b - sqrt(discriminant)) SOBARIGIENE G5)
/ (2*a); discriminant = cmath.sqrt(b**2 -
disp(['Roots are: ', 4*a*c)
num2str(rootl), ' and ', rootl = (-b + discriminant) /
num2str(root2)]); (2*a)
elseif discriminant == root2 = (-b - discriminant) /
root = -b / (2*a); (2*a)
disp(['Root is: *, print(f'Roots are: {rootl} and
num2str(root)]); {root2}")
else
disp('No real roots');
end
MATLAB output: Python output:

Enter coefficient a: 1

Enter coefficient b: 2
Enter coefficient c: 1

Root is: -1

Enter coefficient b: 2
Enter coefficient c: 1
Roots are: (-1+0j) and (-1+0j)

Table 4.24 : Codes to find the roots of a quadratic equation
Example 4.29: Check if a number is divisible by 3 and 5:

MATLAB

Python

num = input('Enter a number: ');

if mod(num, 3) == @ & & mod(num, 5)

disp('The number is divisible
by both 3 and 5.");

else

disp('The number is not
divisible by both 3 and 5.');

end

num = int(input('Enter a number: "))
if num % 3 == @ and num % 5 ==

print('The number is divisible
by both 3 and 5.")

else:

print('The number is not
divisible by both 3 and 5.")

MATLAB output:

Enter a number: 15

and 5.

The number is divisible by both 3

Python output:

Enter a number: 15

The number is divisible by both 3
and 5.

Table 4.25: Codes to check if a number is divisible by 3 and 5
Example 4.30: Check the largest of three numbers:

if a >b && a > c

disp(['The largest
', num2str(a)]);

elseif b > ¢

number is:

disp(['The largest number is:

', num2str(b)]);
else

disp(['The largest number is:

MATLAB Python

a = input('Enter first number: a = float(input('Enter first number:
s "))

b = input('Enter second number: b = float(input('Enter second number:
s)

¢ = input('Enter third number: c = float(input('Enter third number:
s "))

if a > b and a > c:

print(f'The largest number is:
{a}")
elif b > c:

print(f'The largest number is:
{b}")
else:

print(f'The largest number is:

Enter first number: 3
Enter second number: 5
Enter third number: 7

The largest number is: 7

', num2str(c)]); {c}")
end
MATLAB output: Python output:

Enter first number: 3
Enter second number: 5
Enter third number: 7

The largest number is: 7.0

Table 4.26 : Codes to check the largest of three numbers
Example 4.31: Determine if a character is a vowel or a consonant:

MATLAB

Python

ch = input('Enter a character: ',
's');
if any(ch == 'aeiouAEIOU')

disp('The character is a
vowel."');

else

disp('The character is a
consonant.');

end

if ch in 'aeiouAEIOU':
print('The character is a

vowel.")

else:

print('The character is a
consonant. ")

ch = input('Enter a character:

")

MATLAB output:
Enter a character: m

The character is a consonant.

Python output:
Enter a character: m

The character is a consonant.

Table 4.27: Codes to determine if a character is a vowel or a consonant

Example 4.32: Check if a number lies in a specific range (e.g., 10 to 50):

MATLAB

Python

num = input(‘Enter a number:
if num >= 10 && num <= 50
disp('The number lies within
the range 10 to 50.');
else
disp('The number does not lie
within the range.');
end

)

num =
"))
if 10 <= num <= 50:

the range 10 to 50.")
else:

within the range.')

float(input('Enter a number:

print('The number lies within

print('The number does not lie

MATLAB output:
Enter a number: 37

Python output:
Enter a number: 37

The number lies within the range 10|The number lies within the range 10

to 50.

to 50.

Table 4.28 : Codes to check if a number lies in a specific range
Example 4.33: Check if a year is a century year (divisible by 100 but not

400):
MATLAB Python
year = input('Enter a year: '); year = int(input('Enter a year: '))
if mod(year, 100) == 0 && mod(year, |if year % 100 == O and year % 400
400) ~= 0 = 0:

disp('The year is a century print('The year is a century
year."); year.")
else else:

disp('The year is not a century print('The year is not a
year.'); century year.')
end
MATLAB output: Python output:
Enter a year: 2025 Enter a year: 2025
The year is not a century year. The year is not a century year.

Table 4.29 : Codes to check if a year is a century year

Example 4.34: Check if a number is a single-digit number:
MATLAB Python
num = input('Enter a number: '); num = int(input('Enter a number: "))

if abs(num) < 10

disp('The number is a single-
digit number.');
else

disp('The number is not a
single-digit number.');
end

if abs(num) < 10:

print('The number is a single-
digit number.")

else:

print('The number is not a
single-digit number.")

MATLAB output:

Enter a number: 10
The number is not a single-digit
number.

Python output:

10
not a single-digit

Enter a number:
The number is
number.

Table 4.30: Codes to check if a number is a single-digit number

Example 4.35: Determine if a string contains only uppercase letters:

MATLAB

Python

str =

input('Enter a string: ', 's');

str = input('Enter a string:

")

if all(isstrprop(str, 'upper'))
disp('The string contains only
uppercase letters.');
else
disp('The string contains
characters other than uppercase

if str.isupper():

print('The string contains
only uppercase letters.')
else:

print('The string contains
characters other than uppercase

letters."'); letters.')
end
MATLAB output: Python output:

Enter a string: study Enter a string: study

The string contains characters
other than uppercase letters.

The string contains characters other
than uppercase letters.

Table 4.31 : Codes to determine if a string contains only uppercase letters
Example 4.36: Check if two numbers are equal or if one is greater than the

other:

disp('The numbers are equal.');
elseif a > b

disp('The first number is
greater.');

else

disp('The second number is
greater.');

MATLAB Python

a = input('Enter first number: '); |a = float(input('Enter first number:
b = input('Enter second number: '); "))

if a == b = float(input('Enter second

number: "))
if a ==

print('The numbers are equal.')
elif a > b:

print('The first number is
greater.')

else:

Enter first number: 7
Enter second number: 8
The second number is greater.

end print('The second number is
greater.')
MATLAB output: Python output:

Enter first number: 7
Enter second number: 8
The second number is greater.

Table 4.32: Codes to check if two numbers are equal or if one is greater
than the other

Example 4.37: Determine if a triangle is valid based on its angles:

MATLAB

Python

a =

input('Enter first angle:

");

a = float(input('Enter first angle:

b = input('Enter second angle: ');
¢ = input('Enter third angle: ");
if a+b+c==1808&% a > 0 & b >
0 8&& c > 0

disp('The triangle is valid.');
else

disp('The triangle is not

"))

b = float(input('Enter second angle:
"))

c = float(input('Enter third angle:
"))
ifa+b +c
>0 and c > 0:

180 and a > @ and b

Enter first angle: 60
Enter second angle: 60
Enter third angle: 60
The triangle is valid.

valid."); print('The triangle is valid.')
end else:
print('The triangle is not
valid.")
MATLAB output: Python output:

Enter first angle: 60
Enter second angle: 60
Enter third angle: 60
The triangle is valid.

Table 4.33 : Codes to determine if a triangle is valid based on its angles

Example 4.38: Determine the grade based on a score:

MATLAB Python

score = input('Enter the score: '); |score = float(input('Enter the

if score >= 90 score: "))
disp('Grade: A'); if score >= 90:

elseif score >= 80 print('Grade: A'")
disp('Grade: B'); elif score >= 80:

elseif score >= 70 print('Grade: B')
disp(‘Grade: C’); elif score >= 70:

elseif score >= 60 print('Grade: C'")
disp(‘Grade: D’); elif score >= 60:

else print('Grade: D')
disp('Grade: F'); else:

end print('Grade: F')

MATLAB output: Python output:

Enter the score: 93 Enter the score: 93

Grade: A Grade: A

Table 4.34: Codes to determine the grade based on a score

Example 4.39: Check if a point lies in the first quadrant:

MATLAB

Python

x = input('Enter x-coordinate: '); x = float(input('Enter x-
y = input('Enter y-coordinate: '); coordinate: '))
ifx>088& Yy >0 y = float(input('Enter y-
disp('The point lies in the first |coordinate: '))
quadrant.*); if x>0 and y > 0:
elsed. ‘Th . d lie i print('The point lies in the
}sp(The point does not lie in first quadrant.')
the first quadrant.');
else:
end
print('The point does not lie
in the first quadrant.')
MATLAB output: Python output:
Enter x-coordinate: 1 Enter x-coordinate: 1
Enter y-coordinate: 2 Enter y-coordinate: 2
The point lies in the first quadrant. [The point lies in the first
quadrant.

Table 4.35: Codes to check if a

point lies in the first quadrant

Example 4.40: Check if a string contains only digits:

MATLAB

Python

str = input('Enter a string: ',
if all(isstrprop(str, 'digit'))
disp('The string contains only
digits.');
else
disp('The string contains
characters other than digits.');
end

's');

str = input('Enter a string:
if str.isdigit():

print('The string contains
only digits."')
else:

print('The string contains
characters other than digits.')

")

MATLAB output:
Enter a string: 123

The string contains only digits.

Python output:
Enter a string: 123

The string contains only digits.

Table 4.36 : Codes to check if a string contains only digits

Example 4.41: Check if two numbers

are co-prime (GCD = 1):

Python

MATLAB
a = input('Enter first number: ');
b = input('Enter second number: ');

if gcd(a, b) ==

disp('The numbers are co-
prime.");
else

import math
a = int(input('Enter
"))

b = int(input('Enter
"))

if math.gcd(a, b

first number:

second number:

disp('The numbers are not co-

print('The numbers are co-

Enter first number: 3
Enter second number: 5
The numbers are co-prime.

prime."'); prime.")
end else:
print('The numbers are not co-
prime.")
MATLAB output: Python output:

Enter first number: 3
Enter second number: 5
The numbers are co-prime.

Table 4.37 : Codes to check if two numbers are co-prime

Example 4.42: Check if a number is a perfect square:

MATLAB

Python

num = input('Enter a number: ');
if mod(sqrt(num), 1) == 0@

disp('The number is a perfect
square.');

else

disp('The number is not a
perfect square.');

import math

num = int(input('Enter a number:
"))

if math.sqrt(num).is_integer():

print('The number is a perfect
square. ')

else:

Enter a number: 121
The number is a perfect square.

end print('The number is not a
perfect square.')
MATLAB output: Python output:

Enter a number: 121
The number is a perfect square.

Table 4.38 : Codes to check if a number is a perfect square

Example 4.43: Check if a triangle is equilateral, isosceles, or scalene:

if a ==b & b == ¢
disp('The triangle is
equilateral.');
elseif a==b || b==c || a==c
disp('The triangle is
isosceles.');
else

MATLAB Python

a = input('Enter first side: '); a = float(input('Enter first side:
b = input('Enter second side: '); "))

c = input('Enter third side: '); b = float(input('Enter second side:

)
c = float(input('Enter third side:
)
if a == b == c:

print('The triangle is
equilateral."')
elif a == b or b == c or a == c:

disp('The triangle is
scalene.');

print('The triangle is
isosceles.')

Enter first side: 60
Enter second side: 60
Enter third side: 60
The triangle is equilateral.

end else:
print('The triangle is
scalene. ')
MATLAB output: Python output:

Enter first side: 60
Enter second side: 60
Enter third side: 60
The triangle is equilateral.

Table 4.39 : Codes to check if a triangle is equilateral, isosceles, or scalene

Example 4.44: Determine the quadrant of a point in a 2D plane:

MATLAB

Python

X
y = input('Enter y-coordinate:
if x>0 8 y > 0

disp('The point is in the first
quadrant.');

input('Enter x-coordinate:

")
");

x = float(input('Enter x-coordinate:
"))

y = float(input('Enter y-coordinate:
"))

if x>0 and y > 0:

Enter y-coordinate: -2
The point is in the third quadrant.

elseif x < @ && 'y > © print('The point is in the first
disp('The point is in the qu?drant.)

second quadrant.'); elif x < @ and y > 0:

elseif x < 0 && 'y < © print('The point is in the
disp('The point is in the third second quadrant.)

quadrant.'); elif x < @ and y < 0O:

elseif x > 0 && y < © print('The point is in the third
disp('The point is in the qu?drant.)

fourth quadrant.'); elif x > @ and y < @:

else print('The point is in the
disp('The point is on an axis fourth quadrant.’)

or at the origin."'); else:

end print('The point is on an axis

or at the origin.")
MATLAB output: Python output:
Enter x-coordinate: -1 Enter x-coordinate: -1

Enter y-coordinate: -2
The point is in the third quadrant.

Table 4.40: Codes to determine the quadrant of a point in a 2D plane

Example 4.45: Check if a number ends with 5:

MATLAB

Python

num = input('Enter a number:

if mod(num, 10) ==
disp('The number ends with

5.');

else

")

disp('The number does not end
with 5.");
end

num = int(input('Enter a number:

if num % 10 == 5:

"))

print('The number ends with 5.")
else:

print('The number does not end
with 5.")

MATLAB output:
Enter a number: 58
The number does not end with 5.

Python output:
Enter a number: 58
The number does not end with 5.

Table 4.41 : Codes to check if a number ends with 5
Example 4.46: Check if a string starts and ends with the same character:

disp('The string starts and
ends with the same character.');

else

disp('The string does not start
and end with the same character.');

end

MATLAB Python

str = input('Enter a string: ', str = input('Enter a string: ')
's'); if str[@] == str[-1]:

if str(1) == str(end)

print('The string starts and
ends with the same character.")

else:

print('The string does not start
and end with the same character.')

MATLAB output:
Enter a string: mathematics

The string does not start and end
with the same character.

Python output:
Enter a string: mathematics

The string does not start and end
with the same character.

Table 4.42 : Codes to check if a string starts and ends with the same
character

Example 4.47: Check if the sum of the squares of two numbers equals a

third number:

MATLAB

Python

a = input('Enter the first
number: ');

b = input('Enter the second
number: ');

c = input('Enter the third
number: ');

if a2 + b”2 == c

disp('The sum of the squares

of the first two numbers equals
the third number.');

else

disp('The sum of the squares
of the first two numbers does not
equal the third number.');

end

a = float(input('Enter the first
number: "))

b = float(input('Enter the second
number: "))

c = float(input('Enter the third
number: "))
if a**2 + b**2 == c:

print('The sum of the squares of

the first two numbers equals the
third number.')

else:

print('The sum of the squares of
the first two numbers does not equal
the third number.')

MATLAB output:

Enter the first number: 1

Enter the second number: 2

Enter the third number: 3

The sum of the squares of the
first two numbers does not equal
the third number.

Python output:

Enter the first number: 1

Enter the second number: 2

Enter the third number: 3

The sum of the squares of the first
two numbers does not equal the third
number.

Table 4.43 : Codes to check if the sum of the squares of two numbers equals
a third number

Example 4.48: Check if a number satisfies Pythagoras (a? + b* = ¢?):

MATLAB

Python

a = input('Enter the first number:

");
")s

c = input('Enter the third number:
s
if a*2 + b*2 == c”2

disp('The numbers satisfy the
Pythagoras theorem.');
else

disp('The numbers do not
satisfy the Pythagoras theorem."');
end

b = input('Enter the second number:

a = int(input('Enter the first
number: "))
b = int(input('Enter the second
number: "))
c = int(input('Enter the third
number: "))
if a**2 + b**2 == c**2:
print('The numbers satisfy the
Pythagoras theorem. ')
else:
print('The numbers do not
satisfy the Pythagoras theorem.")

MATLAB output:
Enter the first number: 3

Python output:
Enter the first number: 3

Enter the second number: 4
Enter the third number: 5

Enter the second number: 4
Enter the third number: 5

The numbers satisfy the Pythagoras|The numbers satisfy the Pythagoras

theorem.

theorem.

Table 4.44 : Codes to check if a number satisfies Pythagoras
Example 4.49: Check if a matrix is square (rows = columns):

MATLAB

Python

matrix = input('Enter the matrix:
s
[rows, cols] = size(matrix);
if rows == cols

disp('The matrix is square.');
else

disp('The matrix is not
square.');

import numpy as np
matrix = np.array(eval(input('Enter
the matrix: '))) # Use input like
[[1,2],[3,4]]
if matrix.shape[@] ==
matrix.shape[1]:

print('The matrix is square.')
else:

Enter the matrix: [1 2; 3 4]

The matrix is square.

end print('The matrix is not
square."')
MATLAB output: Python output:

Enter the matrix: [[1, 2], [3, 4]]

The matrix is square.

Table 4.45 : Codes to check if a matrix is square
Example 4.50: Check if a matrix is symmetric (A = AT):

MATLAB

Python

matrix = input('Enter the matrix:
s
if isequal(matrix, matrix')

disp('The matrix is
symmetric."');

else

disp('The matrix is not
symmetric."');

end

import numpy as np

matrix = np.array(eval(input('Enter
the matrix: '))) # Use input like
[[1,2,3],[2,4,5],[3,5,6]]

if np.array_equal(matrix, matrix.T):
print('The matrix is symmetric.')
else:

print('The matrix is not
symmetric.")

MATLAB output:
Enter the matrix: [1 2; 3 4]

The matrix is not symmetric.

Python output:

Enter the matrix: [[1,0,2],[9,4,5],
[3,5,6]]
The matrix is not symmetric.

Table 4.46 : Codes to check if a matrix is symmetric

Example 4.51: Check if a matrix is an identity matrix:

if isequal(matrix,
eye(size(matrix)))

disp('The matrix is an
identity matrix."');

else

disp('The matrix is not an
identity matrix.');

MATLAB Python
matrix = input('Enter the import numpy as np
matrix: '); matrix = np.array(eval(input('Enter

the matrix: ')))
[[1,0],[0,1]]
if np.array_equal(matrix,
np.eye(matrix.shape[0])):

print('The matrix is an identity
matrix.")
else:

print('The matrix is not an

Use input like

end identity matrix."')

MATLAB output: Python output:

Enter the matrix: [1 0; 0 1] Enter the matrix: [[1,2,3],[3,4,5],
The matrix is an identity [4,5,6]]

matrix. The matrix is not an identity matrix.

Table 4.47 : Codes to check if a matrix is an identity matrix
Example 4.52: Check if a matrix is diagonal (non-diagonal elements are

Zero):

MATLAB Python

matrix = input('Enter the matrix: import numpy as np

") matrix = np.array(eval(input('Enter
if isequal(matrix, the matrix: '))) # Use input like
diag(diag(matrix))) [[1,0,0],[0,2,0],[0,0,3]]

disp('The matrix is
diagonal.');
else

disp('The matrix is not
diagonal.');

if np.array_equal(matrix,
np.diag(np.diag(matrix))):
print('The matrix is diagonal.')
else:
print('The matrix is not

The matrix is diagonal.

end diagonal.")

MATLAB output: Python output:

Enter the matrix: [1 © ©; © 2 @; O |Enter the matrix: [[1,2,0],[3,90,5],
0 3] [4,5,6]]

The matrix is not diagonal.

Table 4.48 : Codes to check if a matrix is diagonal

Example 4.53: Check if a matrix is upper triangular (all elements below the

diagonal are zero):

MATLAB

Python

matrix = input('Enter the matrix:
s
if isequal(triu(matrix), matrix)

disp('The matrix is upper
triangular.');

else

disp('The matrix is not upper
triangular.');

import numpy as np

matrix = np.array(eval(input('Enter
the matrix: '))) # Use input like
[[1,2,3],[0,4,5],[0,0,6]]
if np.array_equal(matrix,
np.triu(matrix)):

print('The matrix is upper
triangular.")

The matrix is upper triangular.

else:
end
print('The matrix is not upper
triangular.')
MATLAB output: Python output:
Enter the matrix: [4 5 6; @ 7 8; @|Enter the matrix: [[4,5,6],[9,7,8],
0 9] [0,0,9]]

The matrix is upper triangular.

Table 4.49 : Codes to check

if a matrix is upper triangular

Example 4.54: Check if a matrix is lower triangular (all elements above the

diagonal are zero):

MATLAB

Python

matrix
)

if isequal(tril(matrix), matrix)

input('Enter the matrix:

disp('The matrix is lower
triangular.');

else

disp('The matrix is not lower
triangular.');

import numpy as np

matrix = np.array(eval(input('Enter
the matrix: '))) # Use input like
[[1,0,0],[2,3,0],[4,5,6]]
if np.array_equal(matrix,
np.tril(matrix)):

print('The matrix is lower
triangular.')

Enter the matrix: [4 © ©; 5 6 0; 7
8 9]

The matrix is lower triangular.

else:
end
print('The matrix is not lower
triangular.')
MATLAB output: Python output:

Enter the matrix:
[7,8,9]]
The matrix is lower triangular.

[[4,0,0],[5,6,0],

Table 4.50: Codes to check if a matrix is lower triangular

Example 4.55: Check if two matri

ces are equal:

MATLAB

Python

matrixl = input('Enter the first

matrix: ');

matrix2 = input('Enter the second

matrix: ');

if isequal(matrixl, matrix2)
disp('The matrices are

import numpy as np

matrixl = np.array(eval(input('Enter
the first matrix: ')))

matrix2 = np.array(eval(input('Enter
the second matrix: ')))

if np.array_equal(matrixl, matrix2):

The matrices are equal.

equal."'); print('The matrices are equal.')
else else:

disp('The matrices are not print('The matrices are not
equal."); equal."')
end
MATLAB output: Python output:
Enter the first matrix: [1 2; 3|(Enter the first matrix: [[1,0,0],
4] [5,6,0],[7,8,9]]
Enter the second matrix: [1 2; 3|Enter the second matrix: [[2,0,0],
4] [5,6,0],[7,8,9]]

The matrices are not equal.

Table 4.51: Codes to c
Example 4.56: Check if a matrix 1

heck if two matrices are equal
s invertible (determinant # 0):

MATLAB

Python

matrix = input('Enter the
matrix: ');
if det(matrix) ~= ©
disp('The matrix is
invertible."');
else
disp('The matrix is not
invertible."');
end

import numpy as np

matrix = np.array(eval(input('Enter the
matrix: '))) # Use input like [[1,2],
[3,4]]

if np.linalg.det(matrix) != @:
print('The matrix is invertible.')
else:
print('The matrix is not
invertible.')

MATLAB output:

Enter the matrix: [1 0; 0 1]
The matrix is invertible.

Python output:

Enter the matrix: [[1, 2], [3, 4]]
The matrix is invertible.

Table 4.52 : Codes to check if a matrix is invertible

Example 4.57: Check if a matrix 1

s singular (determinant = 0):

MATLAB

Python

matrix = input('Enter the matrix:
")
if det(matrix) ==

disp('The matrix is
singular.");

else

disp('The matrix is not
singular.");

end

import numpy as np

matrix = np.array(eval(input('Enter
the matrix: ")))

if np.linalg.det(matrix) == @:
print('The matrix is singular.')
else:

print('The matrix is not
singular."')

MATLAB output:
Enter the matrix: [1 0; 0 0]
The matrix is singular.

Python output:
Enter the matrix: [[1, 2], [3, 4]]
The matrix is not singular.

Table 4.53 : Codes to check if a matrix is singular

Example 4.58: Check if a matrix is positive definite (all eigenvalues > 0):

if all(eigenvalues > 9)
disp('The matrix is positive

definite.');

else

disp('The matrix is not
positive definite.');

MATLAB Python

matrix = input('Enter the matrix: |import numpy as np

") matrix = np.array(eval(input('Enter
eigenvalues = eig(matrix); the matrix: ")))

eigenvalues
np.linalg.eigvals(matrix)

if all(eigenvalues > 0):

print('The matrix is positive
definite.")
else:

end print('The matrix is not positive
definite.")

MATLAB output: Python output:

Enter the matrix: [1 2; 7 8] Enter the matrix: [[2,0,0],[5,6,0],

The matrix is not positive|[7,8,9]]

definite. The matrix is positive definite.

Table 4.54: Codes to check if a matrix is positive definite
Example 4.59: Check if a matrix is sparse (most elements are zero):

MATLAB

Python

matrix = input('Enter the
matrix: ');
non_zero_elements

nnz(matrix);

import numpy as np

matrix = np.array(eval(input('Enter
the matrix: '))) # Use input like

total elements = numel(matrix);

if non_zero_elements /
total elements < 0.5

disp('The matrix is

[[6,0,1],[0,0,0],[2,0,0]]
non_zero_elements =
np.count_nonzero(matrix)
total elements = matrix.size

Enter the matrix: [1 @ @ @; © 2
©0; ©030; 000 4]
The matrix is sparse.

sparse.'); if non_zero_elements / total_elements
else < 0.5:

disp('The matrix is not print('The matrix is sparse.')
sparse.'); else:
end print('The matrix is not sparse.')
MATLAB output: Python output:

Enter the matrix: [[10,0,0,0],
[0,20,0,0],[0,0,30,0], [0,0,0,40]]
The matrix is sparse.

Table 4.55 : Codes to check if a matrix is sparse
Example 4.60: Check if a matrix is orthogonal (ATA = 1):

MATLAB

Python

matrix = input('Enter the
matrix: ');
if isequal(matrix' * matrix,
eye(size(matrix)))

disp('The matrix is
orthogonal.");
else

disp('The matrix is not
orthogonal.');
end

import numpy as np

matrix = np.array(eval(input('Enter

the matrix: '))) # Use input like

[[1,e],[0,1]]

if np.allclose(np.dot(matrix.T,

matrix), np.eye(matrix.shape[0])):
print('The matrix is orthogonal.')

else:

print('The matrix is not
orthogonal.")

MATLAB output:
Enter the matrix: [1 0; 0 1]

The matrix is orthogonal.

Python output:
Enter the matrix: [[1, 2], [3, 1]]

The matrix is not orthogonal.

Table 4.56 : Codes to check if a matrix is orthogonal
Example 4.61: Check if a matrix is skew-symmetric (AT = -A):

MATLAB

Python

matrix = input('Enter the matrix:
if isequal(matrix', -matrix)

disp('The matrix is skew-
symmetric."');

else

'); |import numpy as np

matrix =
np.array(eval(input('Enter the
matrix: '))) # Use input like
[[GJ'Z]J[ZJG]]

if np.array_equal(matrix.T, -

disp('The matrix is not skew-
symmetric."');

matrix):
print('The matrix is skew-

Enter the matrix: [0 2; -2 @]

The matrix is skew-symmetric.

end symmetric.")
else:
print('The matrix is not
skew-symmetric.")
MATLAB output: Python output:

Enter the matrix:
0]]

The matrix is skew-symmetric.

[[e, 2],

['2:

Table 4.57 : Codes to check if a matrix is skew-symmetric

Both MATLAB and Python support nested loops, where one loop resides
within another. Nested loops are useful for handling multidimensional
arrays or performing operations on matrix-like structures.

Example 4.62: Multiplication table:

fprintf('%d \t', i *);

MATLAB: Python:

n =>5; n=>5

for i = 1:n for i in range(1, n + 1):
for j = 1:n

for j in range(1, n + 1):
print(i * j, end="\t")

end

fprintf('\n'); print()
end
MATLAB output: Python output:
1 2 3 4 5 1 2 3 4 5
2 4 6 8 10 2 4 6 8 10
3 6 9 12 15 3 6 9 12 15
4 8 12 16 20 4 8 12 16 20
5 10 15 20 25 5 10 15 20 25

Table 4.58 : Codes to print multiplication table
The break statement exits a loop prematurely, while the continue statement

skips the current iteration and moves to the next one.

Example 4.63: Break statement:

MATLAB:

Python:

for 1 = 1:10

for i in range(1, 11):

if i == if i ==
ef‘d) print(i)
fprintf('‘%d\n, 1);

end

MATLAB output: Python output:

1 1

2 2

3 3

4 4

Table 4.59: Codes regarding break statement
Example 4.64: Continue statement:

MATLAB: Python:

for i = 1:10 for i in range(1, 11):
if mod(i, 2) == © if 1 % 2 == 0:

EELTELE continue

end . .
forintf('%d\n', i); print(i)

end

MATLAB output: Python output:

1 1

3 3

5 5

7 7

9 9

Table 4.60: Codes regarding continue statement

Conclusion

In this chapter, we explored the essential concepts of control flow and
structures in MATLAB and Python, two powerful programming languages
widely used in scientific computing, data analysis, and automation. The
chapter was divided into two main sections, each focusing on one language.

In the MATLAB section, we learned about conditional statements (if, elseif,

else) for executing code based on logical conditions and loops (for, while)
for repeating tasks or iterating over arrays. These constructs are

fundamental for implementing decision-making logic and handling
repetitive tasks efficiently in MATLAB. In the Python section, we studied
conditional statements (if, elif, else) for branching logic and loops (for,
while) for iterating over sequences like lists or performing condition-based
iterations. Python's clear syntax and flexibility make it easy to implement
complex control flow structures for a wide range of applications. Moreover,
we got full insights of the discussed concept via practical examples as well.
In the next chapter, we will explore the aspects about functions and scripts
in MATLAB and Python in detail.

Exercises

l.

(D% ,,

Use a for loop to calculate the sum of n terms for series ¥,

=4 and 20.

. The following is a list of 10 exam scores. Write a computer program

that calculates the average of the top 3 scores.
Exam scores: 73, 91, 37, 81, 63, 66, 50, 90, 75, 43

. A freelance writer charges a standard rate per article up to a certain

word count and 50% more for each additional word. Write a program
that calculates the writer's earnings. The program should prompt the
user for the number of words in the article and the standard rate per
article (up to the word limit). The program then displays the writer's
total earnings.

. Prompt the user to input a numerical value. Determine and display

whether the input number falls within the following ranges:
a. Less than 10

b. Between 10 (inclusive) and 50 (exclusive)

c. 50 or greater

. Write a program that generates a vector containing 25 random floating-

point numbers between -15 and 15. The program should then calculate
and display the product of all elements in the vector that are greater
than 2.5 in absolute value.

6. Prompt the user to input an integer. Determine and display whether the

10.

11.

input integer is even or odd. Implement error handling to ensure the
user provides an integer input. If a non-integer is entered, display an
appropriate error message and re-prompt the user for valid input.

. Develop a script that utilizes for loops to implement the following:

a. Display integers from 25 down to 5 in descending order.
b. Calculate the sum of all integers from 15 to 75 (inclusive).
c. Calculate the sum of all even integers between 12 and 60 (inclusive).

d. Calculate and display the squares of all integers from 8 to 20
(inclusive).

. Write a program that ask the user to input the dimensions (rows and

columns) of a matrix. Then, using nested for loops, prompt the user to
enter each element of the matrix. Store the elements in the matrix and
display the resulting matrix.

. Develop a script that uses while loops to accomplish the following:

a. Display integers from 30 down to 2 in descending order.
b. Calculate the sum of all odd integers between 11 and 75 (inclusive).

c. Calculate the sum of the squares of all integers from 5 to 20
(inclusive).

Prompt the user to input a non-negative integer. Calculate the factorial
of this number using a while loop. Include error handling to ensure the
user provides a valid non-negative integer input. If the input is invalid,
display an appropriate error message and re-prompt the user for input
until a valid number is entered. Do not use the built-in factorial()
function. Discuss the rationale behind your error-handling strategy.

Write a program in a script file that creates a matrix with elements that
have the following values.

a. The value of each element in the first row is the number of the
column.

b. The value of each element in the first column i1s the number of the
row.

c. The rest of the elements each have a value equal to the sum of the
element above it and the element to the left.

d. When executed, the program asks the user to enter values for n and

12.

13.

14.

15.

16.

17.

m.

Write a program in a script file that finds the smallest odd integer that
is divisible by 11 and whose square root is greater than 132. Use a loop
in the program. The loop should start from 1 and stop when the number
is found.

The program prints the message The required number is: and then
prints the number.

Let X is a vector with numbers from 1 to 100. Write a program for
determining the sum of the cube of all the elements of a vector that are
less than 20.

Write a program that takes a square matrix as input from the user,
prompting for its dimensions (rows and columns) and then each
individual element. The program should determine if it is singular or
non-singular by calculating its determinant.

For a given vector W = [-2, -15, -4, 11, 30, -6, 25, 22, -1, 3, -7, 10, -3,
18, 20]. Write a script that modifies this vector as follows:

a. Doubles any positive element that is divisible by either 2 or 5.

b. Cubes (raises to the power of 3) any negative element that is greater
than -5.

n
Write a script that approximates e* =} . x_1 using the Taylor
n!

series expansion. The script should:
a. Calculate ¢’ using the sum of the series by iteratively adding terms.

b. Stop adding terms when the absolute value of the last term added is
less than a specified tolerance (e.g., 0.0001).

c. Implement a safeguard by limiting the maximum number of terms
added to 30. If the tolerance is not achieved within 30 terms, display
a message indicating that more terms are required.

d. Utilize a while loop for the iterative calculation.

A recent graduate, having saved $10,000, invests in a portfolio yielding
a 7% annual return. They plan to supplement their income while in
further education by withdrawing 8% of their initial investment ($800)
in the first year. To maintain purchasing power, they will increase this
withdrawal amount annually by the inflation rate, assumed to be a

18.

19.

20.

constant 3%. The goal is to determine how many years the investment
will last under these conditions. A program should calculate the yearly
withdrawals, the remaining balance after each withdrawal, and
ultimately, the number of years until the account is depleted.

Write a program that randomly determines the performance order of
five coding competition participants: Alice, Bob, Carol, Dave, and Eve,
and outputs a list displaying this randomized sequence.

Write a program that takes a user-input vector of numbers of arbitrary
length and removes all elements less than -10. Using a for loop, the
program should display the original vector, the modified vector, and the
count of removed elements. For testing, use randi ([-10 20],1,25) to
generate a sample 25-element vector.

Write a program to find all Mersenne primes, a prime number given by

2"-1lying between 1 and 5,000. Do not use built-in primality testing
functions. For example, 127 is a Mersenne prime given as (27 - 1).

Some real-world applications:

1.

Write a MATLAB/Python script to check whether a given year is a leap
year.

. Using if-else, determine the grade of a student based on the score input

(A,B,C,D, F).

. Create a program that checks if a number is positive, negative, or zero.
. Develop a parking fee calculator that charges different rates based on

the number of hours parked.

. Write a logic to apply tax slabs on income using nested if-else

statements.

. Use a for loop to compute the factorial of a number in MATLAB and

Python.

. Print all prime numbers between 1 and 100 using a loop.

. Using a while loop, calculate the sum of the digits of a given number.
. Simulate a bank balance update with compound interest over N years.
10.
11.

Create a multiplication table generator using nested loops.

Write a script to search for a target element in a list/array and exit loop
when found.

12.

13.
14.

15.

16.

17.

18.
19.

20.

21.

22.

23.
24.
25.

26.

217.

28.

29.

30.

Skip printing even numbers using continue and only display odd
numbers from 1 to 20.

Create a loop that reads input until the user enters 'exit'.
Implement a menu-driven calculator that keeps running until the user
selects 'Quit'.

Find the first number in a list that is divisible by both 5 and 7 using
break.

Write a script to search for a target element in a list/array and exit loop
when found.

Skip printing even numbers using continue and only display odd
numbers from 1 to 20.

Create a loop that reads input until the user enters 'exit'.

Implement a menu-driven calculator that keeps running until the user
selects 'Quit'.

Find the first number in a list that is divisible by both 5 and 7 using
break.

Simulate tossing a coin 100 times and count how many times heads or
tails occur.

Write a loop to process student marks and print the highest, lowest, and
average score.

Using loops, create a pattern like a triangle or pyramid of stars.
[terate through a matrix and replace all negative values with zero.

Create a program that simulates an ATM withdrawal: limit retries to 3
if an incorrect PIN is entered.

Design a script that determines eligibility for a government subsidy
based on age, income, and employment status.

Create a hospital triage system using if-else statements that prioritizes
patients based on severity codes.

Write code to validate a password input with rules: minimum 8§
characters, one digit, and one uppercase letter.

Develop a car insurance premium calculator based on vehicle age,
driver's age, and accident history.

Build a program that calculates electricity bills based on slab rates

31.

32.

33.

34.
35.

36.

37.

38.

39.

40.

4].

42.

43.

44.

45.

46.
47.
48.

(e.g., first 100 units = I5/unit, next 100 = I7/unit, etc.).

Simulate population growth over 10 years using a while loop and a
growth rate.

Create a savings tracker that computes how many months are needed to
reach a financial goal.

Write a loop to convert a list of temperatures from Celsius to
Fahrenheit.

Develop a program to find and count palindromes in a list of strings.

Using nested loops, simulate a theater seating layout and mark reserved
seats.

Implement a CAPTCHA retry system that locks the user out after three
failed attempts.

Build a digital clock simulation that displays time from 00:00 to 23:59
using nested loops.

Create a loop that checks and categorizes each word in a sentence as a
noun, verb, or adjective using keyword matching.

Process a directory of files using a loop and skip all hidden/system
files.

Implement a retry mechanism with exponential backoff for network
requests (simulation).

Create a traffic light controller using switch/match-case to control stop,
ready, and go signals.

Design a travel recommendation engine that suggests destinations
based on a numeric user input (budget, climate).

Use match-case to build a language translator for basic words (e.g.,
"hello", "thank you") for three languages.

Simulate a basic menu in a restaurant where the user selects an item
number and quantity.

Develop an academic system that assigns degree classification (e.g.,
first class, second class) based on CGPA.

Check for Armstrong numbers between 1 and 1000 using loops.
Find and sum all perfect numbers below a given number .
Generate a pattern for a digital LED-style clock display using nested

loops.

49. Create a real-time input validator that flags invalid entries (e.g.,
incorrect phone number format).

50. Simulate a shopping cart billing system that loops through items,
applies discounts, and stops on checkout.

Join our Discord space

Join our Discord workspace for latest updates, offers, tech happenings
around the world, new releases, and sessions with the authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/

CHAPTER 5

Functions and Scripts in MATLAB
and Python

Introduction

In this chapter, you will explore how to write and use functions and scripts
in MATLAB and Python, in MATLAB, you will learn how to define
reusable functions in separate files using the function keyword, allowing for
modular and organized code. The chapter also covers MATLAB scripts,
which are collections of commands executed sequentially, ideal for
automating repetitive tasks. Additionally, you will discover anonymous
functions created using the @ symbol, which provides a quick way to
define simple, single-line functions without needing a separate file.

In the Python section, the focus shifts to defining functions with the def
keyword, enabling structured and reusable code blocks. You will also learn
about 1lambda functions: concise, anonymous functions defined in a single
line using the 1ambda keyword; useful for short operations. By the end of
this chapter, you will gain a proper understanding of function and script
implementation in MATLAB and Python, enhancing your ability to write
efficient and maintainable code.

This chapter will explain basic concepts of functions and scripts in
MATLAB and Python. To illustrate significant concepts, we will go over

each language's usage and best practices via examples. By the end of this
chapter, you will have a proper knowledge of writing functions and scripts
in MATLAB and Python. This will help them tackle the complex
computational tasks.

Structure

The structure of this chapter is as follows:
e 5.1 Functions and scripts in MATLAB
e 5.2 Functions and scripts in Python
e 5.3 Comparative study in MATLAB and Python

Objectives

This chapter aims to provide readers with a comprehensive knowledge of
function and script implementation in MATLAB and Python, focusing on
practical applications in scientific computing. The primary objectives
include developing proficiency in MATLAB's function creation using the
function keyword and enabling readers to build reusable code modules with
proper input/output handling. Readers will learn to construct and execute
MATLAB scripts for automating sequences of operations, along with
implementing concise anonymous functions using the (@ operator for
efficient inline calculations. For Python, the chapter focuses on building
competence in defining structured functions with the def statement,
including parameter handling and return values, while also covering script
development for executable program files. A key objective is understanding
Python's 1ambda functions for creating compact, anonymous functions and
their effective use in functional programming paradigms. By mastering
these concepts, readers will acquire the skills to write clean, modular, and
efficient code in these two languages with the ability to select the
appropriate tool (functions, scripts, or anonymous functions) for different
programming scenarios. The chapter emphasizes practical implementation,
ensuring readers can apply these techniques to real-world computational
problems while adhering to best practices and maintainability.

5.1 Functions and scripts in MATLAB

Programming languages are now vital tools for academics, scientists, and
engineers when it comes to processing data and building complex-natured
models. Two languages that are frequently utilized in these fields are
MATLAB and Python. These languages' strong functionality and script-
writing aspects help users create modular and reusable code that enhances
productivity and effectiveness.

However, MATLAB and Python can be used to create functions and scripts.
They have a wide range of libraries and syntax. MATLAB's focus on
mathematical/numerical computations makes it suitable for some specific
engineering applications. Python's versatility makes it appropriate for a
wide range of programming elements. The advantage of each language will
be appropriately applied by users.

5.1.1 Functions

Functions in programming are essential building blocks. Functions provide
reusability of code with clarity. A separate code block created for a specific
task 1s considered a function. It has the ability to process inputs and produce
outputs. Logic incorporated in functions makes code easier to understand.

Let us look at some reasons why using functions is important:

e Modularity: Functions allow programmers to split difficult subjects
into smaller and more manageable parts.

* Reusability: Functions can be used repeatedly inside a program or in
other programs. Due to this, redundancy is minimized, and
development time is saved.

e Abstraction: Functions allow programmers to abstract away
complicated operations.

e Maintainability: Code can be organized into functions to allow for
bug fixes and updates without compromising the overall functionality
of the application.

Functions typically consist of the following components:

e Function name: A descriptive identifier that indicates the purpose of
the function.

e Parameters/Arguments: Inputs that the function can accept.
e Return value: Output produced by the function, which can be used in
other parts of the program.
e Body: Block of code that defines what a function does.
Let us look at the several types of functions:

e Built-in functions: Built-in functions are predefined functions
provided by programming languages or libraries (e.g., len() in
Python, sum() in MATLAB).

e User-defined functions: User-defined functions are functions created
by programmers to perform specific tasks tailored to their needs.

e Anonymous functions: Anonymous functions are the functions
defined without a name, often used for short, one-time operations (e.g.,
lambda functions in Python).

Function type When to use Advantages

When the operation is standard and . ..

Built-in functions provided by MATLAB (e.g., sum, Fast, reliable, optimized, and well-
documented

mean)
User-defined When the task is specific and not Customizable, reusable, promotes
functions covered by built-in functions modularity and code clarity
Anonymous When the operation is short, simple, Concise, defined inline, avoids
functions and used only in a limited context clutter with short one-liners

Table 5.1 : Types of functions

5.1.2 Creating functions in MATLAB

A useful and robust environment to create novel and distinctive capabilities
is offered by MATLAB. Functions are the foundation of every complicated
MATLAB program. Numerous predefined functions are available, or you
may design your own exclusive ones. The following is the format to create
a custom function in MATLAB:
function [01, 02] = myFunc(argl, arg2)

% Function content goes here
end

The explanation of the preceding is as follows:

e function: This required keyword indicates the start of the function
definition.

e [O1, O2]: These are the return values of the function, which are
enclosed in square brackets. The function can return none, one, or
multiple values.

e myFunc: This is the name of a custom function. It must be unique and
should not conflict with existing MATLAB built-in functions or any
script file names in the same directory.

e (argl, arg2): These are input variables (function arguments), enclosed
in parentheses. A function can accept none, one, or multiple arguments.

e Function content: This encompasses all MATLAB code that defines
what the function does, often referred to as the function's body.

e end: This keyword indicates the conclusion of the function definition.

After defining function, save file with a .m extension. This extension
informs MATLAB that file contains a function definition.

Some key points to consider:
e The keyword function signifies that you are defining a function.

e The output variables (e.g., Ol, O2) will hold the results of the
computations performed in the function.

e The function name follows immediately after the equal sign.

e Any function arguments are listed within parentheses after the function
name.

It 1s also important to note that functions in MATLAB can either return a
value or display output without specifically returning it.

Functions can be classified in the following manner:
e Functions that compute and output a single value.
e Functions that compute and return multiple values.

e Functions that perform a specific action, such as publishing, without
returning any values.

The following Examples, 5./ and 5.2 demonstrate the functions that
compute and output a single value.

Example 5.1: Function to calculate fourth power:

To illustrate how a function works in MATLAB, let us create a function
called forpow which takes a single input x and returns 4” power of that
number in the output variable y.
Create a file named fifthpow.m with the following content:
function y = forpow(x)

y = x*; % Calculate the fourth power of x
end

This function can be called from within any MATLAB script or the
Command Window by providing a number as input:

a = forpow(2); % Call the function with input 2
disp(a); % Display the result

Alternatively, you can call the function directly from the Command
Window:

forpow(2)

Output:

16

Example 5.2: Function to calculate the distance between the vectors:

Considered another function diste which calculates the distance between
two vectors, 4 =[1,3] and B = [4,6]. The formula for the distance d between
the points (x,y) and (u,v) is:

d=(x—u)?+(y—v)?

The function can be defined as follows:
function d = diste(A, B)
d = sgrt(sum((A - B).”2)); % Calculate the
distance using vectorized operations
end

Alternatively, you can express function using element-wise squaring:
function d = diste(A, B)

d = sqrt((A(1) - B(1))"2 + (A(2) - B(2))"2); %
Calculate distance element-wise

end

You can call this function with the following:

d = diste([1, 3], [4, 6]); % Direct call
with vectors

You can also call this function by first defining the vectors:

A =[1, 3];

B = [4, 6];

d = distance(A, B); % Call the
function with defined vectors

Output:
4.2426

5.1.3 Function with multiple outputs

MATLAB allows functions to return multiple outputs, making it easier to
get several results from a single operation. To create such a function, you
list the desired outputs in square brackets in the function definition. Inside
the function, you calculate each output separately. For example, a function
that computes both the sum and product of two numbers would be written
as function:[sum_result, product_result] = calculate(a,b),
where sum_result = a + band product_result = a * b.

When you call this function, you can store the outputs in separate variables
like [x,y] = calculate(3,4), which would assign 7 to x (the sum)
and 12 to y (the product). If you only need one output, MATLAB
automatically returns just the first one. This feature is especially handy for
mathematical operations, data processing, and scientific computing, where
multiple related values need to be returned together. By using multiple
outputs, you can write more efficient and organized code, reducing the need
for extra calculations and making your programs easier to read and
maintain. It is a simple but powerful tool that helps streamline your
MATLAB programming.

Reasons to use square brackets []:

e In function definition: Square brackets group the outputs so that
MATLAB understands you are returning multiple distinct values, not

just one:
function [sum_result, product result] = calculate(a,
b)
sum_result = a + b;
product result = a * b;
end
e In function call: When calling the function, square brackets allow you
to unpack each output into its own variable:
[X, y] = calculate(3, 4); % x =7, y = 12
e If only one output is needed: MATLAB returns just the first output by
default:
result = calculate(3, 4); % result = 7 (sum only)

The significance of [] is as follows:
e Clearly tells MATLAB and the programmer that multiple values are
involved.
e Enables structured and organized return values.
e Reduces need for separate function calls—one call can provide many
results.
e Makes code more efficient and readable, especially in scientific and
numerical programming.
Example 5.3: In this example, we will create a function sup, which takes
two numbers as input and returns their sum and product as two outputs:
Define the function in a file named sup . m:
function [s, p] = sup(x, y)
S =X +Y; % Calculate the sum
p =X *y; % Calculate the product

end

This function can also be called from within any MATLAB script or the
Command Window:

[a, b] = sup(2, 4); % Call the function with inputs 2
and 4

disp(a); % Display the sum

disp(b); % Display the product

Alternatively, you can call the function directly from the Command
Window:

[a) b] = Sup(ZJ 4);

Output:
a==6
b =28

Note: Here, we use two variables to capture the results of outputs. If only one variable is used,
only the first output (sum) will be returned.

Example 5.4: Generating Fibonacci number

Create a function fib to use the Binet formula to generate Fibonacci
number taking input from user as the number. The first few Fibonacci
numbers are given as 1,1,2,3,5,8,13,21,.... The formula to generate the
series 1is as follows:

o B =)"
T ﬁ
Here:
V5 V5 -
T 5+1a¢2= 5-1

2 2

Use relevant rounding formula to get the correct answer that can round off
the number to the nearest integer, and start with the 1, 1 as the two terms
counted in between.

Here is the function with no return of output but displaying the series:
function fib(n)

phil = (sqrt(5) + 1)/2;

phi2 = (sqrt(5) - 1)/2;

F = zeros(n, 1); % Pre-allocate for
efficiency

for i = 1:n % MATLAB indexing

starts at 1

% Binet’s Formula: F_n = (phil~n - (-

phi2)~n) /

%
indexing,

3R % R R ¥

on

F(i) = (phil~r(i-1) - (-

sgrt(5)
Since MATLAB uses 1l-based
we use (i-1)
For example:

i=1-->F1)=Fo0=029
i=2-->F(R2)=F1-=1
i=3-->F3)=F2-=1
i=4-->F(4) =F3=2, and so

phi2)~(i-1))/sqrt(5);

% Adjust exponent for 1-based indexing

end

a = round(F);
disp(a)

end

Example 5.5: Conversion to radian:

To get the value of y per given angle in radians (x), write a function called

rad, where:

y =1 if x > pi/2, y = sin(x) if x is in [0,
pi/2] and y = @ otherwise.

Here is the code:
function y=rad(x)
if x> pi/2

y =1
else

if x>=0 && x<=pi/2

y=sin(x)
else
y=0
end
end
end

The following command displays the result of converting 3.14 degrees to
radians in MATLAB:

e Command one: disp(rad(3.14))

The following command displays the result of converting 1 degree to
radians, assuming rad() is a user-defined function (since MATLAB's
built-in function is deg2rad()):

Command two: disp(rad(1))

Example 5.6: Calculating geometric sum:

For a given r and n, write a function called geosum to calculate the sum
of a geometric series:

1+ r+r2+r34+...+1r

Therefore, r and n must be the function's inputs, and the total of the
series must be its output.
Here is how the code can be created to find the geometric sum:
function s=geosum(r, n)
s=0;

for i=0:n

S=S+r°i;

end

end

The following command displays the sum of a geometric series with
ratio 2 and 5 terms, considering geosum() is a user-defined function:
Command: disp(geosum(2,5))

Output: 63

Example 5.7: Numerical integration:

Calculate the area bounded by the curve and the x-axis from x =1 to 6
for the give data:

0

1

2

3

4

1

0.5

0.2

0.1

0.06

0.04

0.03

Table 5.2 : Numerical integration

Use the trapezoidal rule of integration by using the following formula:

6 h
Lf&ﬁh=§bm+2@y+h+“41@qﬂ+%J

Solve the example using the concept of vectors for loop and functions.
Let us now look at the solution.

In this example, the given x and y values need to be first stored in the
vector form, which is common in all three forms, and then the
calculation of the integral can be calculated by the following three
ways that will lead to the same solution:

Using vector form:

clc
clear all
x=[0:6];

y=[1,0.5,0.2,0.1,0.06,0.04,0.03];
n=length(y);
h=x(2)-x(1);
sol=2*sum(y(2:end-1))+y(1)+y(end);
disp((h/2)*sol);
Using loop:
clc
clear all
x=[0:6];
y=[1,0.5,0.2,0.1,0.06,0.04,0.03];
n=length(y);
h=x(2)-x(1);
S=0;
for i=2:n-1

s=s+y(i);
end
ss=2*s+y(1)+y(end);
disp((h/2)*ss);

e Using functions:
function r=trp(x,y)
h=x(2)-x(1)
r=2*sum(y(2:end-1))+y(1)+y(end)
r=((h/2)*r)
end
This function needs to be stored as trp.m, and then, needs to be called
from the Command Window or any other program by defining x and y and
calling it as trp(x,y).

Following is how it can be called from the Command Window:

X = [0:6];
y = [1,0.5,0.2,0.1,0.06,0.04,0.03];
trp(x,y)

In each case, the solution is appearing as 1.4150

5.1.4 Inline functions

Inline functions in MATLAB are a way to define functions within a single
line of code. They are particularly useful for simple functions that do not
require a separate M-file. While they were more commonly used in older
versions of MATLAB, anonymous functions (introduced later) are generally
preferred now for more flexibility. However, understanding inline functions
can still be helpful when encountering older code.

Some important characteristics of inline functions are as follows:

 Inline functions are created using the inline function, and the function's
expression 1s provided as a string.

e They are designed for single-expression functions. More complex logic
requires a separate function file.

e Like regular functions, inline functions can take input arguments.

e Evaluate using feval (or directly). You can evaluate an inline function
using feval or, more commonly now, by directly calling the function.

Here are some examples to give the insight:
Example 5.8: Simple quadratic function:

f = inline('a*x"*2 + b*x + ¢', 'x', 'a', 'b', 'c¢"'); %
Define inline function

% Evaluate the function

result = f(2, 1, 3, -2); % x=2, a=1, b=3, c=-2
disp(result); % Output: 8

In this example, we have defined an inline function f that represents a
quadratic equation. The string 'a*x”2 + b*x + c¢' is the function's
expression. The arguments are listed after the expression string in the order
they should be passed to the function.

Example 5.9: Area of a circle:
area = inline('pi * r~2',
radius = 5;

circle _area = area(radius); % Evaluate directly
disp(circle_area); % Output: 78.5398

Here, the area is an inline function that calculates the area of a circle given
its radius.

r');

5.1.5 Short note on scripts in MATLAB

A script in MATLAB is a file containing a sequence of MATLAB
commands saved with a .m extension. When executed, MATLAB runs the
commands in sequence as if they were typed in the Command Window.

The features of MATLAB scripts are:

e No input/output arguments: Unlike functions, scripts do not accept
inputs or return outputs.

e Shares workspace: Scripts run in the base workspace, meaning
variables defined in a script persist after execution.

e Automation: Helps automate repetitive tasks by running multiple
commands at once.

e Easy to create and edit: Can be written in MATLAB’s built-in editor
or any text editor.

The following are the steps for creating and running a script in MATLAB:
1. Open MATLAB and create a new script (File | New | Script).
2. Write MATLAB commands in the script file.

3. Save the file with a .m extension (e.g., myScript.m).
4. Run the script by doing the following:
a. Clicking the Run button in the editor.
b. Typing the script name (without .m) in the Command Window.

Referencing a script inside another script

You can call or reference another script by simply using its name (without
the .m extension) from within your current script. MATLAB will execute
that script as part of the current sequence.

For example, suppose you have two scripts:
e scriptA.m:
disp('This is Script A')
e mainScript.m:
disp('This is the Main Script')
scriptA % This calls and runs scriptA
disp('Back to Main Script')

Output when you run mainScript.m:

This is the Main Script
This is Script A
Back to Main Script

Note: Since scripts share the same workspace, variables in one script are accessible to another.
This can be useful, but also risky if not managed carefully.

5.2 Functions and scripts in Python

In this section, functions and scripts in the Python language are discussed in
detail. Python functions and scripts are fundamental building blocks for
writing efficient and reusable code. Functions, defined using the def
keyword, encapsulate logic into modular units that can accept parameters
and return values, improving code organization and maintainability. For
quick, one-line operations, lambda functions provide a compact
alternative. Scripts are then saved as .py files, which allow execution of

sequential Python commands and enable automation and programmatic
workflows. Together, these features empower developers to create
structured, scalable, and reusable programs, making Python a powerful
language for tasks ranging from simple calculations to complex data
processing and application development.

5.2.1 Understanding functions

A function is a block of reusable code designed to perform a specific task.
Instead of writing the same code repeatedly, you can write a function once
and call it whenever needed.

Let us look at some reasons to use functions:
e Code reusability
e Improved readability and organization
e Easy debugging and testing
The syntax for defining a function is as follows:

def function_name(parameters):
Optional docstring"""
Function body

return value # Optional

In Python, functions are reusable blocks of code that perform specific tasks,
defined using the def keyword followed by the function name and
parameters in parentheses. For example, def greet(name): creates a
function called greet that takes name as input. The function body, indented
under the definition, contains the code to execute, such as
print(f"Hello, {name}!"). To call the function, you simply use its
name with arguments, like greet("Alice"), which outputs "Hello,
Alice!". Functions can return values using the return statement, making
them versatile for calculations and data processing. By organizing code into
functions, Python programs become more modular, readable, and efficient,
as the same functionality can be reused without repetition. Functions also
support default arguments, variable-length arguments, and keyword
arguments, offering flexibility in how they are called and implemented.

Example 5.10: Function without parameters:

def greet(): Output
print("Hello, welcome to Python!") Hello, welcome to Python!
greet()

Table 5.3 : Function without parameters
Example 5.11: Function with parameters:

def add_numbers(a, b): Output
return a + b Sum: 15

result = add _numbers(5, 10)

print("Sum:", result)

Table 5.4 : Function with parameters
Example 5.12: Function with default parameters:

def power(base, exponent=2): Output
return base ** exponent

print(power(5)) # 5 squared 25

print(power(5, 3)) # 5 cubed 125

Table 5.5 : Function with default parameters

5.2.2 Functions with return values

In Python, functions can return values using the return statement, which
allows them to compute results and pass them back to the caller. When a
function reaches a return statement, it immediately exits and sends the
specified value (or multiple values as a tuple) back to where the function
was called. For example, a function like def add(a, b): return a +
b, calculates the sum of two numbers and returns the result, which can then
be stored in a variable (e.g., result = add(3, 5)). Functions can return
any data type, including lists, dictionaries, or even other functions, and they
can also return None if no return statement is provided. This feature
makes functions powerful for encapsulating logic and producing reusable
outputs, enabling cleaner and more modular code. Multiple values can be
returned as a tuple (e.g., return X, Yy), which the caller can unpack into
separate variables. Return values are essential for building flexible and
efficient programs, as they allow functions to communicate results without
relying on global variables.

In Python, functions return values using the return statement, which

allows them to compute results and pass them back to the caller. When a
function reaches a return statement, it immediately exits and sends the
specified value (or multiple values as a tuple) back to where the function
was called.
For example:
def add(a, b):

return a + b

result = add(3, 5) # result will be 8

Functions can return any data type, such as integers, strings, lists,
dictionaries, or even other functions. If no return statement is specified,
the function returns None by default.

To return multiple values, Python packs them into a tuple:

def calculate(a, b):

return a + b, a * b

You can unpack the returned values into separate variables:

sum_result, product_result = calculate(3, 4)
print(sum_result) # Output: 7
print(product_result) # Output: 12

Note: This makes functions more versatile and allows cleaner, modular code by avoiding
global variables and making the results directly accessible.

Example 5.13: Returning a single value:

def square(num): Output
return num * num 16
print(square(4)) # 16

Table 5.6 : Returning a single value
Example 5.14: Returning multiple values:

def arithmetic_operations(a, b): Output
sum_result = a + b Sum: 15, Difference: 5
difference = a - b

return sum_result, difference
s, d = arithmetic_operations(10, 5)
print(f"Sum: {s}, Difference: {d}")

Table 5.7 : Returning multiple values

5.2.3 Scope of variables in functions

In Python, the scope of variables determines where a variable can be
accessed within a program. Variables defined inside a function are local to
that function, meaning they can only be used within it and are not
accessible outside. For example, if you declare x = 10 inside a function,
trying to print X outside will raise a NameError. Conversely, global
variables, defined outside functions, can be accessed anywhere in the code,
but modifying them inside a function requires the global keyword (e.g.,
global x). Python also supports nonlocal variables for nested functions,
allowing inner functions to modify variables from an enclosing (but non-
global) scope. This scoping mechanism prevents naming conflicts and
promotes modular design, ensuring functions operate independently without
unintended side effects. Understanding variable scope is crucial for
debugging and writing maintainable code.

Understanding variable scope in Python

In Python, the scope of variables determines where in the code a variable
can be accessed. Variables defined inside a function are local, meaning
they only exist within that function. Trying to access such a variable outside
the function will raise a NameError.
For example:
def my function():

x = 10 # local variable
my_function()
print(x) # NameError: name 'x' is not defined

Conversely, global variables are declared outside any function and can be
accessed anywhere in the script. However, if you want to modify a global
variable inside a function, you must use the global keyword:

X =5

def update():
global x
X = 10

update()
print(x) # Output: 10

Python also supports the nonlocal keyword for nested functions, allowing
an inner function to modify variables from its immediate enclosing scope
(not global):
def outer():
X =5
def inner():
nonlocal x
x = 10
inner()
print(x) # Output: 10

Python using scope

Python enforces scoping rules to:
* Avoid naming conflicts by isolating variables in functions.
e Promote modularity and function independence.
* Prevent accidental changes to unrelated parts of code.
e Improve readability and maintainability, especially in larger programs.

Python managing scope

Python uses a well-defined LEGB rule to resolve variable names:
e Local: Variables defined inside the current function.
e Enclosing: Variables in enclosing functions (used in nested functions).
e Global: Variables defined at the top level of the script or module.
e Built-in: Predefined names like 1en, sum, etc.
Example 5.15: Local and global scope:

X = 10 # Global variable Output
def access_variable(): Inside function: 5

X =5 # Local variable . .
print("Inside function:", x) WIESHELR ARIMEAENE &

access_variable()
print("Outside function:", x)

Table 5.8: Local and global scope
Example 5.16: Modifying global variable inside function:

X = 10 Output
def modify global(): 20
global x
X = 20

modify global()
print(x) # 20

Table 5.9 : Modifying global variable inside function

5.2.4 Recursive functions

In Python, a recursive function is a function that calls itself in order to solve
a problem by breaking it down into smaller, more manageable sub-
problems. This approach is particularly useful for tasks that can be naturally
divided into similar, smaller tasks, such as computing factorials, traversing
tree structures, or implementing algorithms like the Fibonacci sequence. For
example, a recursive factorial function would be defined as:

def factorial(n):

return 1 if n == @ else n * factorial(n-1),

Here, the function calls itself with a progressively smaller input until it
reaches the base case (n == @). While recursion can lead to elegant and
concise code, it is important to ensure that each recursive call moves closer
to the base case to avoid infinite recursion and stack overflow errors.
Python's default recursion limit (usually around 1000) prevents excessive
stack usage, but for deep recursion, iterative solutions or memorization
techniques may be more efficient.

Stack trace is an excellent way to visualize what happens when recursion
goes wrong, especially for teaching about infinite recursion and stack
overflow.

For example, infinite recursion (no base case):
def infinite():

return infinite()
infinite()

Output: Stack trace example

Traceback (most recent call last):

File "example.py", line 4, in <module>
infinite()

File "example.py", line 2, in infinite
return infinite()

File "example.py", line 2, in infinite
return infinite()

File "example.py", line 2, in infinite
return infinite()

RecursionError: maximum recursion depth exceeded in comparison

Note: Python repeats the function call over and over, pushing each onto the call stack, until it
exceeds the maximum recursion depth (default = 1000).

Recursion 1s a powerful tool in algorithm design, but requires careful
implementation to balance clarity with performance.

Recursion using the call stack LIFO

When a recursive function is called, Python internally uses a call stack to
keep track of each function call. Each time a function calls itself, a new
frame is pushed onto the stack. When the function hits the base case, the
stack begins to unwind in reverse order—following the LIFO rule.
For example, recursive factorial with stack behavior:
def factorial(n):

if n ==

return 1
else:

return n * factorial(n - 1)

Let us walk through factorial(3):
e (Call stack (Build-up):

o factorial(3) < pushed on top
o factorial(2) «— pushed on top
o factorial(1) < pushed on top

o factorial(0) «— pushed on top — base case hit!
e Call stack (Unwinding begins):

o factorial(0) returns 1 < popped

o factorial(1) returns 1 * 1 =1 « popped

o factorial(2) returns 2 * 1 =2 « popped

o factorial(3) returns 3 * 2 = 6 «— popped

The LIFO behavior in recursion is as follows:
e Last function called: factorial(0)
¢ First to finish: returns 1

e Then each function waiting on the stack gets popped off and evaluated
using the result from the deeper call.

This mirrors how a stack works:
e Push frames as the function dives deeper.
* Pop them as it returns back up.

Example 5.17: Factorial calculation:

def factorial(n): Output
if n == 1: 120
return 1
else:

return n * factorial(n - 1)
print(factorial(5)) # 120

Table 5.10: Factorial calculation

5.2.5 Lambda functions and anonymous functions

A Lambda function is a small anonymous function that can have any
number of arguments but only one expression.

In Python, 1ambda functions (also called anonymous functions) are small,
single-expression functions defined without a name using the lambda
keyword. Unlike regular functions created with def, 1lambda functions are
concise and typically used for short, one-off operations where a full
function definition would be unnecessary. For example, square =
lambda x: x ** 2 creates a 1ambda that squares its input, equivalent to

def square(x): return x ** 2 Lambda functions are commonly
used with higher-order functions like map(), filter(), or sorted() to
provide quick, inline functionality; e.g., sorted(list, key=1lambda
item: item[1]) sorts by the second element of each item. While they
lack statements, annotations, or multi-line logic, lambdas offer a compact
way to write throwaway functions, improving readability for simple tasks.
However, for complex operations, regular named functions are preferred for
clarity and maintainability.

lambda arguments: expression

Example 5.18: Basic 1ambda function:

square = lambda x: x * X Output
print(square(4)) # 16 16

Table 5.11 : Basic lambda function
Example 5.19: Multiple parameters:

add = lambda a, b: a + b Output
print(add(5, 3)) # 8 8

Table 5.12 : Multiple parameters in lambda function
Let us understand where we can use the 1ambda functions.

Lambda functions in Python are best used for short, simple operations
where a full function definition would be overly verbose or unnecessary.
They shine in situations requiring quick, throwaway functions, such as
when you need a one-time key for sorting (sorted(users, key=lambda
x: x['age'])), filtering data (filter(lambda x: x % 2 == 0,
numbers)), or transforming eclements (map(lambda x: x * 2,
values)). Lambdas are also handy in GUI programming for concise event
handlers or in functional programming paradigms where functions are
passed as arguments. However, they should be avoided for complex logic—
once a lambda spans multiple lines or becomes hard to read, it is better to
define a properly named function using def. Their strength lies in their
brevity for simple, inline operations, not in replacing well-structured code.

Example 5.20: Using a 1lambda function with Python's map() to square
cach clement in the list numbers = [1, 2, 3, 4.

Use case one: In map():

numbers = [1, 2, 3, 4] Output
squared = map(lambda x: x ** 2, numbers) [1, 4, 9, 16]
print(list(squared))

Table 5.13 : Use case one on lambda function

Example 5.21: Given the list numbers = [1, 2, 3, 4]. Following is
the use of a lambda function with Python's filter() to extract only the
odd numbers:

Use case two: In filter():

numbers = [1, 2, 3, 4, 5] Output
evens = filter(lambda x: x % 2 == @, [2, 4]
numbers)

print(list(evens))

Table 5.14 : Use case two on lambda function

Example 5.22: Given the list of student tuples students = [("John",
90), ("Jane", 80), ("Dave", 85)]. Following is the use of the
Python's sorted () function with a 1lambda function to sort the students by
their grades in ascending order:

Use case three: In sorted():

students = [("John", 90), ("Jane", 80), |Output

("Dave”, 85)] [('Jane', 80), ('Dave', 85),
sorted students = sorted(students, ('John', 99)]
key=1lambda x: x[1])

print(sorted_students)

Table 5.15 : Use case three on lambda function

5.2.6 Writing Python scripts
A Python script is a file with Python code (usually with .py extension).
Scripts can:

e Define functions

e Include conditionals (like if __name__ == '__main__")

e Be executed directly in the terminal/command prompt

Example script (my_script.py):
def greet(name):
print(f"Hello, {name}!")
if __name__ == "_main__":
greet("Alice")
The steps to running Python scripts are:
1. Save script.
2. Save the file as my_script.py.
3. Run in terminal/command prompt:
python my_script.py

Explanation of if __name__ == "__main__":

e When the script is run directly, __name___ issetto " __main__".

e [f the script is imported into another file, __name__ will be the name
of the script (my_script).

5.3 Comparative study in MATLAB and Python

Example 5.23: Basic function definition:
MATLAB:
function y = squareNumber(x)

y = xA2;
end
Python:
def square_number(x):

return x**2

Example 5.24: Function call:
MATLAB:
squareNumber(4)

Python:

square_number(4) Output
16

Table 5.16: Example 5.24 Python code and output

Example 5.25: Multiple return values:

MATLAB:

function [sumResult, diffResult] = arithmetic(a, b)
sumResult = a + b;
diffResult = a - b;

end

To call the function, the following commands may be used in the Command
Window:

[a,b]=arithmetic(2,4)

a==o6
b =-2
Python:

def arithmetic(a, b):
return a + b, a - b

Example 5.26: Default arguments:

MATLAB: MATLAB does not natively support default arguments in
functions. You need to use nargin to check the number of inputs:
function y = powerFunction(base, exponent)
if nargin < 2
exponent = 2;
end
y = base”exponent;
end
The following code may be run in the Command Window in order to call
the function:
powerFunction(2,5)
ans = 32
Python:
def power_function(base, exponent=2):
return base**exponent

Example 5.27: Function documentation:

MATLAB:

function y = squareNumber(x)
% This function squares x
y = x"2;

end

The function may be called as follows:

squareNumber(10)

ans = 100

Python:
def square_number(x):
"""This function squares x
return x**2

Example 5.28: Recursive function:

MATLAB:
function f = factorial(n)
if n==1
f = 1;
else
f = n * factorial(n-1);
end
end

The function may be called as follows:
factorial(5)
ans = 120

Python:
def factorial(n):
if n == 1:
return 1
return n * factorial(n-1)

Example 5.29: Anonymous function (Lambda):
MATLAB:
square = @(x) x"2;

Python:
square = lambda x: x**2
Example 5.30: Applying anonymous function to array:
MATLAB:
array = [1, 2, 3, 4];
result = arrayfun(@(x) x"2, array);
Python:
array = [1, 2, 3, 4]
result = list(map(lambda x: x**2, array))
Example 5.31: Writing scripts:
MATLAB: Create myscript.m with content:
disp('Hello MATLAB');
Python: Create myscript.py with content:
print('Hello Python')
Example 5.32: Running scripts:
MATLAB: Run in Command Window:
Myscript
Python: Run in terminal:
python myscript.py
Example 5.33: Function files:
MATLAB: Each function should have its own .m file.
Python: Functions can be stored in a single . py file, like:
def square(x):

return x**2

def cube(x):
return x**3

Example 5.34: Function returning arrays:

MATLAB:
function y = doubleArray(x)
y = x * 2;

end

The function may be called as follows via the Command Window:
doubleArray(2)
ans = 4
Python:
def double array(x):
return [1 * 2 for i in x]
Example 5.35: Function handles:
MATLAB:
f = @sin;
result = f(pi/2);
Python:
import math

f = math.sin
result = f(math.pi/2)

Example 5.36: Conditional logic in function:

MATLAB:
function y = absoluteValue(x)
if x > 0
y = X;
else
y = =X,
end
end

The calling of the function may be as follows:
absoluteValue(-10)
ans = 10
Python:
def absolute_value(x):

return x if x > @ else -x
Example 5.37: Looping inside functions:
MATLAB:

function y = sumNumbers(n)

y = 0;
for 1 = 1:n

y =y +1;
end

end

The function calling will be as follows.
sumNumbers(5)
ans = 15
Python:
def sum_numbers(n):
y =90
for i in range(1l, n+l):
y += 1
return y
Example 5.38: Passing a function as an argument:
MATLAB:
function y = applyFunction(f, x)
y = f(x);
end
The calling of the function will be as follows.
applyFunction(@sqrt, 16)
ans = 4

Python:
def apply function(f, x):
return f(x)
apply function(lambda x: x**0.5, 16)

Example 5.39: Nested functions:

MATLAB:

function outer()
function inner()
disp('Inner function');

end
inner();
end

Python:
def outer():
def inner():
print('Inner function')
inner()

Example 5.40: Variable scope:
MATLAB: Global variables must be declared inside functions:
function setGlobal()
global x
X = 20;
end

In the Command Window, the following commands will be provided:
global x = 10;

setGlobal(); % Call the function

disp(x); % Will print 20

Python:

X = 10

def set _global():

global x
X = 20
Example 5.41: Argument checking (number of inputs):
MATLAB:
function y = powerFunction(base, exponent)
if nargin < 2
exponent = 2;
end
y = base”exponent;
end

The function calling will be as follows:

powerFunction(2,4)

ans = 16

Python: Python handles this more naturally:

def power_function(base, exponent=2):
return base**exponent

Example 5.42: Main block in scripts:

MATLAB: All code in a script is executed when the script runs, no special
"main” handling.

Python:
def main():
print('This is the main block")
if name_ == "_main_ ':
main()
Conclusion

This chapter provided a comprehensive exploration of functions and scripts
in both MATLAB and Python, highlighting their significance in structured
and efficient programming. In MATLAB, we examined how to define
reusable functions using the function keyword, create scripts for executing
command sequences, and implement anonymous functions with the @
operator for concise calculations. These features enhance modularity and
automation in numerical computing.

In Python, we covered function definition using def, enabling encapsulation
of logic into reusable blocks, and introduced lambda functions for quick,
inline operations. Additionally, we discussed the role of scripts (.py files) in
running Python programs, facilitating automation and workflow execution.

By mastering these concepts, programmers can write cleaner, more
efficient, and scalable code in both languages. Whether working on data
analysis, scientific computing, or software development, understanding
functions and scripts is essential for optimizing performance and
maintaining organized projects. The skills acquired in this chapter serve as a
foundation for more advanced programming techniques, ensuring

adaptability across various computational tasks. In the next chapter, we will
learn how to handle the data in MATLAB.

Exercises

MATLAB

Writing functions:

1. Write a MATLAB function named square num that takes an input
number and returns its square.
2. Define a function sum two numbers that takes two numbers as input
and returns their sum.
3. Create a function factorial calc that computes the factorial of a given
number using recursion.
4. Implement a function is_even that checks whether a given number is
even and returns a logical value (true or false).
5. Write a function max_of three that takes three numbers as input and
returns the largest.
6. Define a function reverse vector that takes a vector as input and
returns it in reverse order.
7. Implement a function circle area that takes the radius of a circle as
input and returns its area.
8. Write a function celsius to fahrenheit that converts a given Celsius
temperature to Fahrenheit.
9. Define a function quadratic roots that finds the roots of a quadratic
equation given coefficients a, b, and c.
10. Create a function string_length that takes a string as input and returns
the number of characters.
Scripts:
11. Write a MATLAB script that generates the first 10 Fibonacci numbers
and displays them.
12. Create a script that reads an array of numbers from the user, calculates

the sum, and displays it.

13.

14.

15.

16.

17.
18.

19.
20.

Write a script that takes a user-input number and prints whether it is
positive, negative, or zero.

Develop a script that computes the sum of squares of numbers from 1
to 50.

Write a script that plots the sine and cosine functions on the same graph
for values from 0 to 2.

Create a script that solves a system of linear equations using
MATLARB?’s linsolve function.

Develop a script that takes a user-input string and prints it in reverse.

Write a script that creates and saves a matrix of random numbers to a
.mat file.

Create a script that reads data from a .csv file and plots it.

Write a script that simulates rolling a die 100 times and plots a
histogram of the results.

Anonymous functions:

21.

22.

23.
24.

25.

26.

27.

28.

29.

30.

Define an anonymous function that computes the cube of a given
number.

Create an anonymous function that calculates the area of a rectangle
given its length and width.

Define an anonymous function that checks if a number is prime.

Implement an anonymous function that computes the square root of a
given number.

Define an anonymous function that computes the sum of the squares of
two numbers.

Write an anonymous function that converts temperature from
Fahrenheit to Celsius.

Create an anonymous function that returns the maximum of two given
numbers.

Implement an anonymous function that calculates the exponential value
of a given number.

Define an anonymous function that computes the hypotenuse of a right
triangle given two sides.

Create an anonymous function that checks if a given number is a

palindrome.

Python
Defining functions:

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Write a Python function square num that takes a number as input and
returns its square.

Define a function sum_two numbers that takes two numbers as input
and returns their sum.

Implement a function factorial calc that computes the factorial of a
given number using recursion.

Write a function is_even that checks whether a given number is even
and returns True or False.

Define a function max_of three that takes three numbers as input and
returns the largest.

Write a function reverse string that takes a string as input and returns
the reversed string.

Implement a function circle area that takes the radius of a circle as
input and returns its area.

Define a function celsius to fahrenheit that converts a given Celsius
temperature to Fahrenheit.

Create a function quadratic_roots that finds the roots of a quadratic
equation given coefficients a, b, and c.

Write a function string_length that takes a string as input and returns
the number of characters.

Lambda functions:

41
42.

43.
44,

45.

. Write a lambda function that computes the cube of a given number.

Create a lambda function that calculates the area of a rectangle given
its length and width.

Define a lambda function that checks if a number is prime.

Implement a lambda function that computes the square root of a given
number.

Write a lambda function that computes the sum of the squares of two
numbers.

46. Create a lambda function that converts temperature from Fahrenheit to
Celsius.

47. Define a lambda function that returns the maximum of two given
numbers.

48. Implement a lambda function that calculates the exponential value of a
given number.

49. Write a lambda function that computes the hypotenuse of a right
triangle given two sides.

50. Write a lambda function that takes a list of numbers and returns a new
list with only the even numbers.

Common practice questions in MATLAB and Python

1. Create the spd function, which takes three complex integers as input
and outputs the sum of the numbers.

2. Create a function called maxn that accepts two inputs and outputs the
maximum value.

3. Create a function called factn that takes a number as input, computes
the factorial of that number, and outputs the result.

4. To create multiples of a given integer, write a function. Enter the
number and the number of multiples that are required as inputs in order
to produce a vector output.

5. To find the sum of squares for each component of a vector, write a
function called sos. Provide an example to illustrate it, using the vector
A=[1234].

6. Convert a point's cartesian coordinates (x, y, z) to its cylindrical
coordinates (7, 8, z) by creating a function called ctocy. The following

are the conversion rules: Since 8= tgn—1! (E); Z=2,r = Jx2 +y2,

X

A vector whose components are the specified vector's cartesian
coordinates serves as the input variable for this function.

7. To create the Fibonacci series, write a function called fibbo with the
initial values 0 and 1. The sum of the two preceding terms is the next
term. Provide the function with the user's phrase count as input. (Make

0 and 1 the initial two terms.).

8. Develop a function named pera that computes and returns the
perimeter and area of a circle with a given radius as input.

9. Examine a function that computes and returns three output values. The
function accepts a single input argument denoting a total amount of
seconds and returns the equivalent hours, minutes, and remaining
seconds.

10. Write a function to compute the volume and surface area of a hollow
cylinder. It accepts as input parameters the radius of the cylinder's base
and the height of the cylinder. The volume is expressed as mr?h, while
the surface area is represented as 27rh.

Join our Discord space
Join our Discord workspace for latest updates, offers, tech happenings
around the world, new releases, and sessions with the authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/

CHAPTER 6
Data Handling in MATLAB

Introduction

This chapter offers a comprehensive guide to data handling functionalities in
MATLAB, aimed at helping users manage data seamlessly for analysis,
computation, and visualization. MATLAB provides a robust suite of tools to
read and write data from a wide variety of sources, including text files,
spreadsheets, and binary files. It also supports import/export operations
involving formats like .csv, .x1ls, .mat, and images and audio.
Understanding such techniques is needed for anyone working with
experimental measurements, simulation results, or system inputs and outputs.

The chapter starts with foundational I/O functions such as fopen, fprintf,
and fread, and builds up to high-level functions like readtable and
writetable used for tabular data. It also provides insights about practical use
cases, best practices, and data cleaning techniques. Whether working in
academia, research, or industry, mastering these data handling tools equips
readers to develop efficient, automated workflows that are critical in
engineering design, scientific experimentation, financial modeling, and beyond.

Structure

The chapter contains the following topics:
e 6.1 Introduction to data handling in MATLAB

e 6.2 Reading from and writing to files
e 6.3 Importing and exporting data
e 6.4 Handling different data formats

Objectives

By the end of this chapter, you will be able to understand the role of data
handling in MATLAB for engineering, scientific, and industrial applications,
read data from various file formats using built-in MATLAB functions, and
write and export processed data to formats compatible with external tools and
systems. You will also learn to utilize low-level I/O functions (fopen, fread,
fwrite, fprintf, etc.) for custom data handling operations and apply high-
level functions to efficiently work with structured data.

By the end of this chapter, you will be able to handle specialized data formats,
including image and audio files, for simulation or multimedia analysis and
implement best practices for data cleaning and preprocessing to ensure accurate
computations and visualizations.

You will understand how to develop automated workflows for recurring data
processing tasks in research labs, industrial testing setups, and financial
modeling, and integrate MATLAB data handling techniques into broader
analytical pipelines to support decision-making and innovation.

6.1 Introduction to data handling in MATLAB

Data handling in MATLAB plays an important role in applications ranging
from basic input/output operations to advanced data analytics. With its
enhanced set of built-in functions and interactive tools, MATLAB allows users
to read, write, import, export, and manage data across a wide variety of formats
such as plain text files, CSV files, Excel spreadsheets, MAT-files, images,
audio files, and structured data formats like JSON and XML.

Efficient data handling is necessary regarding tasks that include real-time data
acquisition, simulation data logging, algorithm testing with benchmark
datasets, and statistical analysis. MATLAB simplifies these operations with
high-level functions such as readtable, writetable, load, save, and
importdata, as well as low-level file /O commands like fopen, fread, and

fprintf for custom file handling workflows.

Furthermore, data handling tools in MATLAB are integrated with its
visualization and computation capabilities, which allow readers to clean,
analyze, and visualize data. Whether you are processing experimental lab
results, performing data-driven simulations, or integrating with sensors or other
software environments, mastering data handling in MATLAB enables
reproducible, scalable, and efficient analysis pipelines.

6.2 Reading from and writing to files

MATLAB offers a variety of functions for file I/O operations. Such functions
allow readers to read from and write to text and binary files with precision and
flexibility, which makes them essential for storing results, processing raw data,
or reading configuration parameters.

For text-based data, functions such as fopen, fclose, fprintf, fscanf, and
fgets are mostly used. Such functions give the user low-level control over file
handling, enabling customized formatting, line-by-line processing, and efficient
management of large textual datasets.

Binary file operations, using functions like fread and fwrite, are mainly
useful when working with performance-sensitive applications or large
numerical arrays. Binary formats are more compact and faster to process than
text files, but they require an understanding of the underlying data structure.
Moreover, MATLAB supports high-level file access functions such as
readmatrix, writematrix, readcell, and writetable, which simplify
the reading and writing of structured data. These are mainly useful when
dealing with delimited files or tables of mixed data types.

Whether you are logging sensor data in real-time, storing simulation results, or
reading data for analysis, mastering file I/O in MATLAB is foundational for
building robust and scalable data processing workflows.

6.2.1 Basic file operations
Let us look at some basic file operations:

e fopen: Opens a file and returns a file identifier. The fopen function is
used to open a file for reading, writing, or appending. It returns a file
identifier (an integer), which is used by other file I/O functions to refer to

the file.

Syntax:

fileID = fopen(filename, permission);
Example:

fileID = fopen('data.txt', 'r'); % Opens the file for
reading

Common permission modes:

o 'r'": read only

o 'w': write (overwrites existing file or creates new)

o 'a': append (writes at end of file)

o 'rt', 'w+', 'a+'": read/write combinations

fclose: Closes an open file. The fclose function is used to close a file that
was opened with fopen. It is good practice to always close a file after

operations are complete to free system resources and prevent data
corruption.

Syntax:

status = fclose(filelD);
Example:

fclose(fileID);

Note: A status of 0 means the file closed successfully; -1 indicates an error.

fprintf: Formats and writes data to a text file.fprintf writes data to a
file with formatting options (similar to C language syntax). It is useful for
writing structured text, such as CSV lines or logs.

Syntax:

fprintf(fileID, formatSpec, A, ...);

Example:

fileID = fopen('output.txt', 'w');
fprintf(fileID, 'The value is: %.2f\n', 3.1416);
fclose(fileID);

fscanf /fgets: Reads formatted/unformatted data from a file.

fscanf: Reads formatted data from a file. It reads data using a specified
format and returns it in array form.

Syntax:

A = fscanf(filelID, formatSpec);

Example:

fileID = fopen('numbers.txt', 'r');

A = fscanf(fileID, '%f'); % Reads numeric data
fclose(fileID);

fgets: Reads a line of text from a file. It reads one line at a time and returns
a character vector (string).

Syntax:

line = fgets(filelD);

Example:

fileID = fopen('log.txt', 'r');

line = fgets(fileID); % Reads first line
fclose(fileID);

Text file operations are useful for logging, configuration files, and processing
simple datasets. Files must be opened before use and closed after operations to
avoid memory leaks or data corruption.

Example 6.1: Writing to a text file:

fileID = fopen('example.txt','w');

fprintf(filelID, 'This is a sample line.\n');
fclose(filelD);

This example demonstrates how to write a line of text into a new or existing
text file using MATLAB. The fopen function is used with the "'w' (write)
mode to create or overwrite the file named example.txt. It returns a file
identifier fileID, which is a reference used in subsequent file operations. The
fprintf function is then used to write the string "This is a sample
line." followed by a newline character (\n) into the file. This approach is
especially useful when logging information, saving results, or generating
structured data files. Finally, fclose(fileID) is called to close the file,
ensuring that all data is properly saved and system resources are released.
Example 6.2: Reading from a text file:

fileID = fopen('example.txt','r');

line = fgets(filelD);

disp(line);

fclose(filelD);

In this example, the content previously written to example.txt is read and
displayed. The file is opened using fopen with the 'r' (read) mode, and a file
identifier fileID is returned. The fgets function is used to read a single line
of text from the file, including the newline character. The content is stored in
the variable line, which is then displayed in the MATLAB Command Window
using the disp function. After reading, the file is closed using
fclose(fileID) to ensure proper file handling. This example illustrates a
fundamental way to access and process textual data line by line in MATLAB.

6.2.2 Working with binary files

Let us look at how to work with binary files:

o fwrite: Writes binary data. The fwrite function is used to write
numerical or character data to a file in binary format. Binary writing is
faster and more compact than text writing, making it suitable for large
datasets, signal processing outputs, and applications where storage
efficiency or performance is critical.

Syntax:
fwrite(fileID, data, precision);

Note:
fileID: Identifier obtained from fopen.
data: The array or variable you want to write.

precision: (Optional) Specifies the data type, such as 'double’,
'intl6', 'uint8’, etc. If not specified, the defaultis 'uint8".

Example:

fileID = fopen('binaryfile.bin',
data = [3.14, 2.71, 1.41];
fwrite(fileID, data, 'double');
fclose(fileID);

w');

* fread: The fread function reads binary data from a file into an array. It is
typically used in conjunction with fwrite to retrieve binary-stored
information for further processing.

Syntax:
A = fread(fileID, size, precision);

Note:
fileID: Identifier from fopen.

size: (Optional) Number of elements to read or a two-element
vector [m, n].

precision: (Optional) The data type to read, e.g., 'double’,
'intl6’.

Example:

fileID = fopen('binaryfile.bin', 'r');
readData = fread(fileID, 3, 'double');
fclose(fileID);

Binary files are compact and faster to read/write compared to text files.
They are ideal for large datasets and performance-critical applications.

Example 6.3: Writing and reading binary data:

fileID = fopen('data.bin’,'w');

data = [1 2 3 4 5];

fwrite(fileID, data, 'double');

fclose(filelD);

fileID = fopen('data.bin’','r');

newData = fread(fileID, 5, 'double');

disp(newData);

fclose(filelD);

The preceding example illustrates how to store numerical data in a binary file
and then retrieve it using MATLAB’s fwrite and fread functions. Binary
files are particularly useful for efficient storage and fast I/O operations,
especially when working with large numerical datasets.

In the first part of the example, a file named data.bin is opened in write
mode ('w') using fopen. The array data = [1 2 3 4 5] contains five
double-precision numbers that are written to the file using fwrite. The third
argument 'double’ specifies that the data should be stored in double-

precision floating-point format. After writing, the file is closed using
fclose(fileID) to ensure the data is properly saved and the file is released
from memory.

In the second part, the file data.bin is reopened in read mode ('r'). The
function fread reads five double-precision values from the file into the
variable newData. This retrieves the original data that was stored, which is
then displayed using disp(newData). Finally, the file is closed again with
fclose.

6.3 Importing and exporting data

Efficient data analysis in MATLAB often requires importing from and
exporting to files in various formats such as .csv, .x1s, or .mat.

Efficient data analysis in MATLAB often requires importing from and
exporting to files in various formats such as .csv, .xls, .x1sx, .txt, and
.mat. MATLAB provides a rich set of high-level functions that allow users to
seamlessly read data from external sources, process it within the MATLAB
environment, and then export results for documentation, further analysis, or
integration with other tools.

When working with structured datasets, such as spreadsheets or tabular text
files, functions like readtable, readmatrix, and readcell are commonly
used to bring data into MATLAB in the form of tables, numeric arrays, or cell
arrays, respectively. These formats are particularly useful for handling large
datasets, performing statistical analysis, and visualizing trends.

On the export side, MATLAB offers corresponding functions such as
writetable, writematrix, and writecell, which allow processed data to
be saved in a format that is compatible with Excel, databases, and data-sharing
platforms. This makes it easy to collaborate with non-MATLAB users or to
import MATLAB results into other software tools for visualization and
reporting.

Additionally, MATLAB supports reading from and writing to its own
proprietary format (.mat) using load and save. MAT-files are especially useful
for storing variables with complete fidelity, including complex data structures
such as arrays, structs, and cell arrays.

6.3.1 Using readtable and writetable
Let us look at the details:
» readtable: Reads data into a table format from text/CSV/Excel.

The readtable function in MATLAB is used to import data from
external files such as .txt, .csv, or Excel files into a table format. Tables
in MATLAB are highly structured data types that allow storage of columns
with different data types (e.g., numeric, text, categorical). This function
automatically detects variable names from the first row of the file and
assigns them as column headers in the table, making the data easy to
access and analyze using column names.
Usage:
T = readtable('data.csv');

Note: This command reads the content of data.csv into the variable T
as a table. You can then reference columns using dot notation, like
T.Age or T.Name.

e writetable: Exports a table to text/CSV/Excel.

The writetable function is used to export data from a MATLAB table to
an external file in formats such as .csv, .txt, or Excel (.x1sx). This is
especially useful when you want to share processed results or save data in
a structured, readable format. It preserves column headers and
automatically handles formatting for numeric and text data.

Usage:

writetable(T, 'output.csv');

Note: This command writes the table T to a file named output.csv. Column names will be writte
as headers in the first row of the file.

Tables are ideal for handling mixed-type data with named variables. They
make data analysis more readable and manageable.

Note: In MATLAB, when writetable command is used to export a
table, we can ignore writing the headers (i.e., variable names) by
using the 'WriteVariableNames' option and setting it to false.

Syntax:
writetable(T, ‘filename.csv', '"WriteVariableNames',

false);
For example:

T = readtable('data.csv');

writetable(T, 'new_data.csv', '"WriteVariableNames',
false);

Example 6.4: Importing data:

tbl = readtable('sample_data.csv');
disp(tbl);

In this example, the readtable function is used to import data from a CSV
file named sample_data.csv. The data is read into the variable tbl, which
becomes a MATLAB table. Tables are useful for storing column-oriented data
where each column can have a different type (e.g., numeric, text, categorical),
and the first row of the CSV file is typically treated as the header containing
variable names. After importing, the disp(tbl) command is used to display
the contents of the table in the MATLAB Command Window. This example
demonstrates a simple and efficient way to load structured data into MATLAB
for further analysis or visualization.

Example 6.5: Exporting data:

writetable(tbl, 'output data.csv');

This example shows how to export a table from MATLAB to a new CSV file
using the writetable function. The table variable tbl, which might have
been created or modified in MATLAB, is written to a file named
output_data.csv. The function automatically includes the variable names
as headers in the first row of the file. This allows the data to be easily shared or
imported into other software tools like Excel or Python. This operation is
particularly helpful when saving processed data, intermediate results, or
generating reports.

6.3.2 Working with .mat files
Let us look at how to work with .mat files:
e save: Saves workspace variables to a .mat file.

The save function is used to store variables from the MATLAB workspace
into a .mat file. MAT-files are MATLAB's proprietary binary file format
designed for storing variables efficiently, preserving data types, array
dimensions, and even complex structures like cell arrays or structs.

Syntax:
save(‘filename.mat’, ‘varl’, f‘var2’, ...);

o 'filename.mat': Name of the file to save the data to. If the extension is
omitted, .mat is used by default.

o 'varl', 'var2', ... : Names of the variables to be saved. If no variable
names are given, all variables in the current workspace are saved.

Example:
A = magic(3);
B = rand(1,5);

save('myData.mat', 'A', 'B');

Note. This command saves the variables A and B into a file named
myData.mat.

e load: It loads variables from a .mat file. The load function is used to
retrieve data stored in a .mat file and bring it back into the current
MATLAB workspace. It recreates the variables with the same names and
contents they had when saved.

Syntax:
load('filename.mat');

Note. This will load all variables stored in the file. To load specific
variables, list them as additional arguments.

Example:

load('myData.mat'); % Loads all variables

or

load('myData.mat', 'A'); % Loads only variable A

MAT-files are the native MATLAB format. They preserve data structure, types,
and attributes efficiently.

Example 6.6: Saving and loading variables

A = rand(5);

save('matrixData.mat', 'A');

clear A;

load('matrixData.mat"');

disp(A);

This example demonstrates how to save a variable to a .mat file and then load it
back into the MATLAB workspace.

In the first line, the variable A is created using rand(5), which generates a 55
matrix of random numbers between 0 and 1. The save function is then used to
store the variable A into a file named matrixData.mat. This file acts as a
container that preserves the full content and structure of the variable, making it
easy to store and retrieve data across MATLAB sessions.

After saving, the clear A command is used to remove the variable A from the
workspace, simulating a fresh environment where the variable no longer exists.
Then, the load function is used to retrieve the variable A from the saved .mat
file. The variable is restored with its original name and data. Finally, disp(A)
displays the content of the matrix A in the Command Window, confirming that
the data has been successfully saved and reloaded.

6.3.3 Importing Excel files
Let us look at the details:
o readtable: readtable is a high-level function that reads data from an
Excel file (or CSV/text file) and returns it as a MATLAB table. It is
especially useful when the data contains mixed types (e.g., numbers,

strings, dates) and when you want to retain variable names from the first
row of the spreadsheet.

Example:
T = readtable('data.xlsx');
o readmatrix: readmatrix reads numeric and string data from an Excel

file and returns it as a numeric matrix. It is useful when your data is
mostly numerical and you do not need headers or variable names.

Example:
M = readmatrix('data.xlsx');
o xlsread: xlsread is an older function that reads data from Excel
spreadsheets. It can return numeric data, text data, or both.
Example:
[num, txt, raw] = xlsread('data.xlsx');

Note: x1lsread is still supported but has been largely replaced by
readtable and readmatrix in newer MATLAB versions.

Note:
Syntax for reading from a specific sheet:

xlsread('data.xlsx', 'Sheet2'); %

[num, txt, raw]
Using sheet name

[num, txt, raw] xlsread('data.xlsx', 2); %

Using sheet index
For example:
[num, txt, raw] = xlsread('data.xlsx', 'Sales2024');

As per the preceding command, we can read the data from read
data from the sheet named 'Sales2024'.

 writetable, writematrix, or xIswrite:

o writetable: writetable writes a table from MATLAB to an Excel file.
It includes variable names as column headers and is ideal for saving
structured data for sharing or further analysis in Excel.

Example:
writetable(T, 'output.xlsx');

o writematrix: writematrix writes a numeric matrix to an Excel or
CSV file. It is a fast and simple way to export purely numerical data.

Example:
writematrix(M, 'matrix_output.xlsx');

o xIswrite: x1swrite is the legacy function used for writing data to Excel
files. It works with numeric and cell array data.

Example:
x1lswrite('output.xlsx', M);

Excel files are commonly used in business and research. MATLAB
functions offer compatibility with both old and new Excel formats.

6.3.4 Importing text and delimited files

MATLAB provides multiple functions to import data from text files and
delimited files (like .csv, .tsv, or .txt). Each function serves different
purposes depending on the data structure and the level of control needed:

e readmatrix, readcell, readlines, and importdata offer various levels of
control:

o readmatrix: This function reads numeric and mixed-type data from a
file and returns a numeric matrix. It automatically skips non-numeric
data or replaces it with NaN.

It is best for numerical data stored in spreadsheets or delimited files.
Example:
data = readmatrix('data.txt');

o readcell: reads the entire content of a file into a cell array. This is useful
when the file contains mixed data types (numbers, strings, dates, etc.).

Best for: Mixed-type content with unknown structure.
Example:
C = readcell('survey.csv');

o readlines: Reads a text file line by line and returns a string array, where
each element represents one line of the file. It is especially helpful for
logs, comments, or line-wise text analysis.

It is best for line-by-line text processing.
Example:
lines = readlines('logfile.txt');
o Importdata: A versatile function that attempts to detect the data format

automatically. It can read numeric, text, or mixed data and return a
structure containing the contents.

It is best for quick imports without knowing the format in advance.
Example:
data = importdata('datafile.txt');

e detectlmportOptions This function is used to create and customize an
import options object before reading the file. It allows you to control
which columns to import, data types, delimiters, missing value handling,
and more.

It 1s best for fine-tuning the import process for complex or messy datasets.
Example:

opts = detectImportOptions('data.csv');
opts.SelectedVariableNames = {'Name', 'Age'};
T = readtable('data.csv', opts);

Some of the basics are notified as follows.

o Use readmatrix for numeric data

o readcell for mixed content

o readlines for plain text

o importdata for flexible auto-detection

o detectImportOptions for precision control over file reading
behavior

o Use detectImportOptions to fine-tune how the data is read

Example 6.7: Using readmatrix:
data = readmatrix('data.txt');

6.4 Handling different data formats

MATLAB supports reading and writing a wide variety of file formats. Let us
look at them in detail in the following sections.

6.4.1 Supported formats

MATLAB provides comprehensive support for a wide range of file formats,
enabling users to work with diverse data sources across scientific, engineering,
and multimedia domains. For textual and tabular data, formats such as .txt and
.csv are commonly used and can be easily imported using functions like
readtable or readmatrix. Spreadsheet files in .x1s and .x1sx formats
are widely supported, allowing seamless integration with Excel data for both
reading and writing using readtable, writetable, and similar functions.

For high-performance storage and native compatibility, MATLAB’s own .mat
files are ideal for saving variables and complex data structures, while .bin files
offer compact, binary-level data storage for efficient I/O operations. MATLAB
also supports the Hierarchical Data Format (.h5), which is commonly used
in large-scale scientific data applications, especially in fields like climate
modeling, machine learning, and bioinformatics.

In addition to numerical and text-based formats, MATLAB handles multimedia
files with ease. Image formats such as .jpg, .png, and .tiff can be processed
using imread and imwrite, and audio formats like .wav and .mp3 can be
accessed using audioread and audiowrite.

MATLAB supports a wide range of file formats for data import and export,
which enables users to work with various types of information across
disciplines. Commonly used file formats include:

e Text files: .txt, .csv

Spreadsheet files: .x1s, .x1sx

Binary and MATLAB files: .mat, .bin
Hierarchical data format: .h5

Image files: . jpg, .png, .tiff

Audio files: .wav, .mp3

6.4.2 Using the file import tool

MATLAB's GUI-based file import tool provides a visual interface to preview
and import data. It can generate equivalent code for automation.

MATLAB's GUI-based file import tool provides an intuitive and user-friendly
interface for importing data from various file types such as .txt, .csv, .x1s,
and .x1sx. This tool is particularly useful for users who prefer a visual
workflow over command-line operations or for those working with unfamiliar
data formats.

When you open a file using the file import tool (e.g., by double-clicking a file
in the current folder window or using the uiimport command), MATLAB
displays a preview of the data, including headers, delimiters, and sample rows.
You can interactively choose the range of data to import, specify how text and
numeric values should be interpreted, select which columns to include, and
define missing value representations.

One of the most powerful features of the tool is its ability to automatically
generate equivalent MATLAB code (such as readtable or readmatrix
commands). This allows users to replicate the same import configuration
programmatically in scripts, making workflows more efficient and
reproducible.

6.4.3 Data cleaning after import

Let us look at the details:

e Use fillmissing to replace NaN values: The fillmissing function is
used to replace missing values (represented as NaN in numeric arrays or
empty cells in tables) with more meaningful values. This can be done
using methods like 'linear' interpolation, 'previous' values, or constant
values.

Example:

cleanData = fillmissing(data, 'linear');

Note. This replaces NaN values with linearly interpolated values,
which is useful when dealing with time series or sensor data.

e Sample data table with missing values:
% Sample data with missing (NaN) values
data = table([1; 2; NaN; 4; NaN], [10; NaN; 30; NaN;
50],
'VariableNames', {'Sensorl’,
'Sensor2'});
disp('Original Data:');
disp(data);
¢ Cleaning missing data using fillmissing:
% Fill missing values using linear interpolation

cleanData = fillmissing(data, 'linear');
disp('Cleaned Data (Linear Interpolation):');

disp(cleanData);
Output:
Sensorl Sensor2
1 10
2 NaN
NaN 30
4 NaN
NaN 50

Cleaned Data (using 'linear' method):
Sensorl Sensor2

1 10
2 20
3 30
4 40
4 50

* fillmissing(data, 'linear'): Replaces NaN with values that are
linearly interpolated between existing numeric data.

This is useful for time-series data, sensor data, or datasets where
smooth transitions between values are expected.

o Identify outliers with isoutlier: The isoutlier function detects data
points that are significantly different from the rest of the dataset, using
statistical methods like mean + 3 standard deviations, interquartile range
(IQR), or moving median.

Example:
outliers = isoutlier(data);

Note:
Sample data:

data = [10 12 11 13 10 100 12 11 14 10]; % 100 is an outlier

Identify Outliers:

outliers = isoutlier(data);

Display results:

disp('Original Data:');

disp(data);

disp('Outlier Flags (true = outlier):');
disp(outliers);

% Optional: Extract outliers

detectedOutliers = data(outliers);
disp('Detected Outliers:');

disp(detectedOutliers);

Output:

Original Data:

10 12 11 13 10 100 12 11 14
10
Outlier Flags (isoutlier output):
false false false false false true false false
false false
Detected Outliers:

100

Note. This returns a logical array where true indicates an outlier. You
can then choose to remove, replace, or analyze these outliers further.

e Convert text to numbers with str2double, categorical: Imported data
often includes textual entries for numeric fields (e.g., "10", "12.5" as
strings) or non-numeric labels (e.g., "Low", "Medium", "High").

MATLAB provides functions to convert these appropriately:

o str2double: Converts text strings representing numbers into numeric
values.

numArray = str2double(stringArray);
o categorical: Converts text labels into categorical arrays, useful for
statistical modeling and grouping.
catData = <categorical({'Low', 'Medium', ‘'High',
‘Low'});
Example 6.8: Filling Mmissing data:
tbl.Height = fillmissing(tbl.Height, 'linear');

Conclusion

This chapter provided an in-depth exploration of MATLAB's data handling
capabilities. We discussed basic file operations, including reading and writing
text and binary files. Next, we covered importing/exporting data using
functions like readtable, writetable, load, and save. We also explored the use of
the file import tool and addressed working with different file formats, including
text, Excel, and .mat files. In the next chapter, data handling in Python is

discussed along with a comparative study in MATLAB and Python.

Exercises

Reading from and writing to files (text and binary)

l.

. Create a file using fopen and write the numbers 1 to 10 using fprintf.

O 00 1 O D kA~ W DN

Write a MATLAB script to create a text file and write your name into it.

. Read and display the content of a text file line by line using fgets.

. Use fscanf to read numeric values from a formatted text file.

. Create a binary file and store an array of 10 random numbers using fwrite.
. Write MATLAB code to read 5 double values from a binary file.

. Use fopen to open a non-existing file in read mode. What is the result?

. Write a script that appends a new line of text to an existing file.

. Count the number of lines in a given text file using file I/O functions.
10.

Create a log file and write timestamps of 5 random events using fprintf.

Working with .mat Files

l.
2.
3.
4.
5.

Save three variables (a matrix, a vector, and a string) to a .mat file.

Load only one specific variable from a .mat file using the load command.
Write code to check if a variable exists in a .mat file before loading.

Use whos('-file', filename) to list contents of a .mat file.

Clear all variables, then reload them from a .mat file and verify.

Importing text, CSV, and Excel files

O 0 3 N i A W N —

p—
=)

. Use readtable to import a CSV file and display its summary.

. Use readmatrix to read numeric data from a .csv file.

. Use readcell to read mixed data from a .csv file.

. Import a .txt file using importdata and plot the data.

. Read the first five rows and selected columns of a large Excel file.

. Use detectImportOptions to skip header rows in a CSV import.

. Modify import options to read only numeric columns from a text file.

. Use readtable to import data, and plot one of its columns.

. Use xlsread (legacy) to read both numeric and text data from an Excel file.
. Write a script that imports a dataset and filters all rows with missing data.

Exporting data to files

l.
2.
3.
4.
5.
6.
7.

Export a MATLAB table to a CSV file using writetable.

Write a numeric matrix to a text file using writematrix.

Use writecell to save a cell array to a CSV file.

Append data to an existing CSV file without overwriting it.
Create a table with 3 columns and write it to an Excel file.
Write a script that saves a matrix to both .mat and .csv formats.
Export MATLAB variables to .txt and read them back.

Data cleaning after Import

l.

. Use isoutlier to identify and count outliers in a numeric dataset.

AN D B~ W DN

Use fillmissing to fill NaN values in imported table data.

. Convert a text column in a table to numeric using str2double.

. Convert a column of labels (e.g., "Low', 'Medium', 'High') to categorical.

. Remove all rows containing missing values from a table.

. Use standardizeMissing to define custom missing value symbols (e.g.,

'NA").

Practical applications and challenges

l.

. Save experimental sensor readings to a binary file for five seconds.

N B~ LN

10.

11.

Import student grades from an Excel file and compute average marks.

. Create a script that logs daily temperature to a text file.
. Write a script that imports time-series data and plots it.
.Build a data report generator that reads a file, performs analysis, and

exports the summary.

. Import a large CSV file and extract top five highest values in a specific
column.

. Develop a script that reads multiple files and combines their contents into
one table.

. Create a function that accepts a filename and returns the number of rows in
it.

. Automate importing all .csv files from a folder using a loop.

Import a CSV file, detect categorical and numeric columns, and separate
them.

Create a .mat file containing simulation results and a script to reload and

visualize them.

12. Simulate data cleaning workflow: import | detect missing | fill | export
cleaned data.

Join our Discord space

Join our Discord workspace for latest updates, offers, tech happenings around
the world, new releases, and sessions with the authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/

CHAPTER 7

Data Handling in MATLAB and
Python

Introduction

In this chapter, you will explore essential file handling techniques in
Python, focusing on the use of built-in functions such as open, read, write,
and close to perform file operations. These functions allow for efficient
reading from and writing to files, enabling data persistence and
manipulation. Additionally, the chapter delves into working with popular
data formats, specifically CSV and JSON. You will learn how to use
Python's CSV module to read from and write to CSV files, which are
commonly used for tabular data storage. The json module will be
introduced to handle JSON files, a widely used format for data interchange.
By the end of the chapter, you will be equipped with the skills to manage
files and process data in various formats, enhancing their ability to work
with real-world data in Python.

Structure

This chapter will cover the following topics:
e 7.1 File handling and data formats in Python will be discussed.

e 7.2 Comparative study of MATLAB and Python via examples will be
provided.

Objectives

By the end of this chapter, you will be able to perform file operations in
Python using built-in functions like open, read, write, and close to manage
data storage and retrieval effectively. They will also learn to read and write
data to CSV files using Python's csv module, enabling them to handle
tabular data for tasks like data analysis or reporting.

This chapter will enable you to parse and generate JSON data using the json
module, facilitating seamless data interchange in web APIs and
configuration files, and apply file handling and data format skills to real-
world scenarios, such as processing log files, managing datasets, or
integrating with external systems. You will learn to develop practical
solutions for automating data storage, retrieval, and transformation tasks,
enhancing their ability to work with diverse data sources.

7.1 File handling and data formats in Python

Any programming language must provide file handling in order for
programs to effectively store, retrieve, and alter data. Python comes with
built-in routines to manage files and supports a variety of file types,
including text, CSV, and JSON. Python's file handling features, including
reading and writing files, working with structured data formats like CSV
and JSON, and real-world applications, will all be thoroughly covered in
this chapter.

Python file handling, including reading from and writing to files, will be
covered in this chapter. Additionally, you will learn how to interact with
different data types, including CSV and JSON. These tasks are made simple
and effective by Python's built-in functions and modules.

7.1.1 File handling in Python
File handling is a fundamental aspect of programming that allows you to

store, retrieve, and manipulate data persistently. In Python, file handling is
straightforward and efficient, thanks to built-in functions like open, read,
write, and close. The open function is used to access files in different
modes, such as read ('t'), write ('wW'), append ('a"), or binary ('b'). Once a file
is opened, you can read its content using methods like read, readline, or
readlines, which are useful for processing text or data line by line. For
writing data, the write and writelines methods allow you to add
content to files, either by overwriting existing data or appending to it.
Properly closing files using the close method or the with statement ensures
that resources are released and data is saved correctly. File handling is
essential for tasks like logging, data storage, configuration management,
and working with external datasets, making it a critical skill for real-world
programming;:

e Opening and closing files: File handling in Python begins with
opening a file, performing the necessary operations, and ensuring it is
properly closed to avoid resource leaks or data corruption. The open()
function is used to access a file, requiring two main arguments: the file
path and the mode, such as 'r' for reading, 'w' for writing, 'a’ for
appending, or 'b' for binary mode. For example, file =
open('example.txt', 'r') opens a file in read mode. Once a file
is opened, you can read its content using methods like read(),
readline(), or readlines(), which are useful for processing text
or data line by line. For writing data, methods like write() and
writelines() allow you to add content to the file, such as
file.write('Hello, World!"). After performing operations, it is
crucial to close the file using the close() method, like
file.close(), to free up system resources. Alternatively, the with
statement is recommended as it automatically handles closing the file,
even if an error occurs, making the code cleaner and safer.

Example 7.1: Python provides the open() function to open files in
different modes:

Opening a file

file = open("CHAPTER7 DATA.txt", "r") # Read mode
file.close()

Using with statement (recommended for automatic closing):

with open("CHAPTER7 DATA.txt", "r") as file:
content = file.read()
print(content)

File modes: File modes in Python determine how a file is opened and
what operations can be performed on it. The open () function accepts a
mode parameter, which specifies whether the file is opened for reading,
writing, appending, or in binary format. The most common modes
include 'r' for reading (default mode), 'w' for writing (which
overwrites the file or creates it if it does not exist), and 'a’ for
appending (which adds data to the end of the file without overwriting
existing content). For binary files, modes like read binary (rb) and
write binary (wb) are used, which are essential for handling non-text
files such as images or executables. Additionally, the 'r+' mode
allows both reading and writing, while 'a+' enables reading and
appending. Python also supports exclusive creation with the 'x"' mode,
which ensures a file is created only if it does not already exist,
preventing accidental overwrites. Understanding these modes is crucial
for effective file handling, as they dictate how data is accessed,
modified, or stored, ensuring the integrity and proper management of
files in your programs:

Mode Description
'r' Read mode (default)
'w' Write mode (overwrites if file exists)

Append mode (adds content to the file)

Creates a new file, returns error if it exists

Binary mode

Text mode (default)

e Reading files: Python’s open() function with the

Table 7.1 : Different file modes

r' mode,
combined with methods like read(), readline(), or
readlines(), allows you to efficiently read and process content from

files.

Example 7.2: Python allows reading files using various methods:
Read entire file
with open("CHAPTER7_DATA.txt", "r") as file:
content = file.read()
print(content)

Example 7.3: Reading line by line:
with open("CHAPTER7_DATA.txt", "r") as file:
for line in file:
print(line.strip())

Example 7.4: Reading a limited number of characters:
with open("CHAPTER7_DATA.txt", "r") as file:
print(file.read(10)) # Read first 10 characters

Example 7.5: Reading all lines into a list:
with open("CHAPTER7 DATA.txt", "r") as file:
lines = file.readlines()
print(lines)
Writing to files: Python’s open() function with the 'r' mode,
combined with methods like read(), readline(), or
readlines(), allows you to efficiently read and process content from
files:
Example 7.6: To write content to a file:
Writing to a file
with open("CHAPTER7 DATA.txt", "w") as file:
file.write("Hello, this is a sample text file.")

Example 7.7: Appending data:

Appending to a file

with open("CHAPTER7_DATA.txt", "a") as file:
file.write("\nAppending new content.")

Example 7.8: Writing multiple lines:
lines = ["First 1line\n", "Second 1line\n", "Third

line\n"]
with open("CHAPTER7_DATA.txt", "w") as file:
file.writelines(lines)

7.1.2 Working with CSYV files

Comma-separated values (CSV) files are widely used for storing and
exchanging tabular data due to their simplicity and compatibility with
various applications like Excel, databases, and data analysis tools. Python’s
built-in csv module provides powerful tools to read from and write to CSV
files efficiently. To read a CSV file, you can use the csv.reader()
function, which processes each row as a list of values.

This allows you to iterate through rows and perform operations like filtering
or calculations. For writing data, the csv.writer() function is used,
enabling you to create or update CSV files. Methods like writerow() and
writerows() make it easy to add data row by row or in bulk.
Additionally, the csv.DictReader() and csv.DictWriter() classes
allow you to handle CSV data as dictionaries, which is particularly useful
when working with files that include headers:

» Reading CSV files: Python’s csv.reader() function allows you to
read and process CSV files row by row, making it easy to extract and
manipulate tabular data.

Example 7.9: Reading data from a CSV file using csv.reader():

import csv
with open("CHAPTER7 DATA.csv", "r") as file:
reader = csv.reader(file)
for row in reader:
print(row)
Example 7.10: Using DictReader to read CSV as dictionaries:
with open("CHAPTER7_DATA.csv", "r") as file:
reader = csv.DictReader(file)
for row in reader:
print(row["YearsExperience"], row["Salary"])

Example 7.11: Writing to CSV files:

with open("CHAPTER7_DATA.csv", "w", newline="") as
file:
writer = csv.writer(file)
writer.writerow(["YearsExperience", "Salary"])
writer.writerow(["50", 2500000])

Example 7.12: Using DictWriter:

import csv
with open("CHAPTER7_DATA.csv", "w", newline="") as
file:
fieldnames = ["YearsExperience", "Salary"]
writer = csv.DictWriter(file,
fieldnames=fieldnames)
writer.writeheader()
writer.writerow({"YearsExperience": 51,
"Salary": 2800000})

Example 7.13: Appending rows to CSV:
with open("CHAPTER7_DATA.csv", "a", newline="") as
file:

writer = csv.writer(file)

writer.writerow([52, 3000000])

Using pandas for CSV handling
Example 7.14: Reading a CSV file:

import pandas as pd
df = pd.read csv('data.csv')
print(df.head()) # Shows first 5 rows

Example 7.15: Writing to a CSV file:
import pandas as pd
data = {

"Name': ['Alice', 'Bob'],

'Age': [30, 25],

'City': ['New York', 'London']

}
df = pd.DataFrame(data)

df.to_csv('output.csv', index=False)

Example 7.16: Merging two CSV files:

import pandas as pd

Read the two CSV files

employees = pd.read_csv('employees.csv')

departments = pd.read_csv('departments.csv')

Merge on a common column (e.g., Department ID)

merged_df = pd.merge(employees, departments, on='Dept ID')
print(merged_df.head())

Example 7.17: Concatenating multiple CSV files:
import pandas as pd

import glob

Read all CSV files in the folder

csv_files = glob.glob('monthly reports/*.csv')

Concatenate all CSVs into a single DataFrame

df list = [pd.read csv(file) for file in csv_files]
combined _df = pd.concat(df_list, ignore_index=True)
print(combined df.head())

Example 7.18: Pivot table from CSV data:

df = pd.read_csv('sales_data.csv')

pivot = pd.pivot_table(df, index='Region', columns='Product’,
values='Sales', aggfunc='sum')

print(pivot)

Example 7.19: Correlation matrix from CSV data:

df = pd.read csv('student_scores.csv')
correlation_matrix = df.corr()

print(correlation_matrix)

7.1.3 Working with JSON files

JavaScript Object Notation (JSON) is a lightweight and widely used data
format for storing and exchanging structured data, commonly used in web

APIs, configuration files, and data storage. Python provides the JSON
module, which simplifies working with JSON data by allowing easy
conversion between JSON strings and Python objects like dictionaries and
lists. To read JSON data from a file, you can use the json.load()
function, which parses the file and converts it into a Python object. When
writing JSON data back to a file, you can use the json.dump() function
with the indent parameter, which makes the output human-readable by
formatting the JSON with indentation (e.g., indent=4 gives nicely
indented nested structures).

Additionally, the json.loads () and json.dumps () functions allow you
to work with JSON strings directly, making it convenient for tasks like
parsing API responses or serializing data. By mastering the json module,
you can efficiently handle JSON data for tasks such as web development,
configuration management, and data interchange.

e Example 7.20: Reading JSON files

Python’s json.load() function allows you to read JSON data from a
file and convert it into a Python object, such as a dictionary or list, for
easy access and manipulation:
import json
with open("1lmb.json", "r") as file:
data = json.load(file)
print(data)
o Example 7.21: Writing JSON files
Python’s json.dump() function converts a Python object, such as a

dictionary or list, into a JSON-formatted string and writes it to a file for
storage or data interchange:

data = {"Name": "Alice", "Age": 25, "City": "New
York"}
with open("output.json", "w") as file:
json.dump(data, file, indent=4)
o Example 7.22: Working with JSON strings

Python’s json.loads() and json.dumps() functions allow you to
parse JSON strings into Python objects and serialize Python objects

into JSON strings, respectively, enabling seamless data interchange:
json_string = '{"Name": "Alice", "Age": 25, "City":
"New York"}'

data = json.loads(json_string)

print(data["Name"]) # Output: Alice

7.1.4 Working with other data formats

While CSV and JSON are among the most commonly used data formats,
Python also provides robust support for working with a variety of other data
formats, making it a versatile tool for data processing and integration. For
instance, the xml.etree.ElementTree module allows you to parse and
use XML files, which are widely used in web services and document
storage. Similarly, the pandas library offers extensive functionality for
reading and writing data in formats like Excel (.x1sx), HDF5, and Parquet,
which are essential for data analysis and scientific computing. For working
with binary data, Python’s struct module enables you to pack and unpack
data into binary formats, which is useful for low-level data processing.
Additionally, libraries like PyYAML and TOML allow you to handle
YAML and TOML files, commonly used for configuration files.

Let us look at the data formats in detail:

e XML: Extensible Markup Language (XML) is a widely used format
for storing and transporting structured data, commonly found in web
services, configuration files, and document storage. Python provides
the xml.etree.ElementTree module, which simplifies parsing,
creating, and manipulating XML data.

Example 7.23: The xml.etree.ElementTree module is used to
parse and create XML data:
import xml.etree.ElementTree as ET
Parsing XML data
tree = ET.parse(‘data.xml’)
root = tree.getroot()
for child in root:
print(child.tag, child.attrib)

Creating XML data

root = ET.Element('root')

child = ET.SubElement(root, 'child')
child.set('name’', 'Alice')

tree = ET.ElementTree(root)
tree.write('output.xml')

YAML: YAML Ain’t Markup Language (YAML) is a human-
readable data serialization format commonly used for configuration
files, data exchange, and storing structured data. Python’s PyYAML
library provides tools to easily parse and generate YAML data.

Example 7.24: The PyYAML library is used to work with YAML files:

import yaml

Reading YAML data

with open('data.yaml', 'r') as file:
data = yaml.safe load(file)
print(data)

Writing YAML data

data = {
"Name': 'Alice',
"Age': 30,
"City': 'New York'

}

with open('output.yaml', 'w') as file:
yaml.dump(data, file)

Pickle: Pickle is a Python-specific module used for serializing and
deserializing Python objects, enabling you to save complex data
structures like lists, dictionaries, and custom objects to a file and
retrieve them later. It is particularly useful for saving program state or
transferring data between Python programs.

Example 7.25: The pickle module is used for serializing and
deserializing Python objects:

import pickle

Serializing Python object

data = {
"Name': 'Alice’,

Age': 30,
"City': 'New York'

}

with open('data.pkl', 'wb') as file:
pickle.dump(data, file)

Deserializing Python object

with open('data.pkl', 'rb"') as file:
data = pickle.load(file)
print(data)

7.1.5 Practical examples and use cases

Python’s file handling and data format capabilities make it an essential tool
for real-world applications across various domains. For instance, in data
analysis, Python’s c¢sv module is frequently used to read and process large
datasets stored in CSV files, enabling tasks like cleaning, filtering, and
analyzing data. Similarly, json module is widely used in web development
to parse JSON responses from APIs or store configuration settings in a
readable format. For example, a weather app might use Python to fetch
JSON data from a weather API and display it to users.

In automation, Python’s file handling functions like open, read, and write
are used to automate repetitive tasks, such as generating reports, logging
data, or managing files in bulk. For example, a script could read log files,
extract specific information, and write summaries to a new file. In machine
learning, CSV files are often used to load training datasets, while JSON
files store model configurations or results.

Python’s ability to handle multiple data formats also makes it ideal for data
integration tasks, such as converting data between CSV, JSON, and other
formats for compatibility across systems. For example, a script might read
data from a CSV file, transform it, and save it as a JSON file for use in a
web application. These practical examples demonstrate Python’s versatility
in solving real-world problems efficiently.

Example 7.26: Reading and writing configuration files.

Python provides modules like json, yaml, and configparser to easily
read, write, and manage configuration files in formats such as JSON,
YAML, and INI, streamlining application settings management:
import json
Reading configuration from a JSON file
with open('config.json', 'r') as file:
config = json.load(file)
print(config)
Writing configuration to a JSON file
config = {
'host': 'localhost',
"port': 8080,
"debug': True
}
with open('config.json', 'w') as file:
json.dump(config, file, indent=4)

Example 7.27: Processing large CSV files.
Python’s pandas library, combined with chunking techniques, allows
efficient processing of large CSV files by reading and manipulating data in
manageable portions, avoiding memory overload:
import csv
Processing large CSV files in chunks
chunk_size = 1000
with open('large data.csv', 'r') as file:

reader = csv.reader(file)

chunk = []

for i, row in enumerate(reader):

chunk.append(row)

if i % chunk_size == @ and 1 != 0:
print(f'Processing chunk: {chunk}")
chunk = []

if chunk:

print(f'Processing final chunk: {chunk}")

Example 7.28: Handling nested JSON data.

Python’s json module, combined with dictionary manipulation techniques,
allows you to easily access, modify, and extract data from nested JSON
structures for seamless data processing:

import json

Handling nested JSON data

data = {
"Name': 'Alice',
"Age': 30,
"Address': {

'Street': '123 Main St',
"City': 'New York',
'State’': 'NY'

}

Accessing nested data

print(data['Address']['City'])

Modifying nested data

data['Address']['City'] = 'Los Angeles'
print(json.dumps(data, indent=4))

Example 7.29: Serializing and deserializing Python objects.

Python’s pickle module enables the conversion of complex Python
objects into a byte stream for storage or transmission and restores them
back into objects when needed:
import pickle
Serializing Python object
class Person:
def init (self, name, age):
self.name = name
self.age = age
person = Person('Alice', 30)
with open('person.pkl', 'wb') as file:

pickle.dump(person, file)

Deserializing Python object

with open('person.pkl', 'rb') as file:
loaded person = pickle.load(file)
print(loaded_person.name, loaded person.age)

7.2 Comparative study of MATLAB and Python
via examples

MATLAB and Python are powerful tools for data analysis, scientific
computing, and automation, but they differ in their strengths, use cases, and
ecosystems. MATLAB 1is renowned for its simplicity in numerical
computations, matrix operations, and specialized toolboxes, making it a
favorite in engineering and academia. Python, on the other hand, is a
general-purpose language with a vast library ecosystem, making it versatile
for a wide range of applications. In this section, a wide range of examples is
provided to study the MATLAB and Python codes from a comparative point
of view. You may try these codes as practice work for a better
understanding of the concept:
o Example 7.30: Reading a text file line by line:
MATLAB:
fileID = fopen('example.txt', 'r');
while ~feof(filelD)
line = fgetl(filelD);
disp(line);
end
fclose(filelD);

Python:
with open('CHAPTER7_DATA.txt', 'r') as file:
for line in file:
print(line, end="")

o Example 7.31: Writing multiple lines to a text file:

fileID = fopen('example.txt', 'w');
fprintf(fileID, 'Line 1\n');
fprintf(fileID, 'Line 2\n');
fclose(filelD);

Python:

Open the file in write mode
fileID = open('CHAPTER7 DATA.txt', 'w')
Write lines to the file
fileID.write('Line 1\n")
fileID.write('Line 2\n"')

Close the file

fileID.close()

e Example 7.32: Appending to a text file:
MATLAB:
fileID = fopen('example.txt"',
fprintf(fileID, 'Line 3\n');
fclose(filelD);
Python:
with open('CHAPTER7_DATA.txt', 'a') as file:
file.write('Line 3\n'")
e Example 7.33: Reading a binary file
MATLAB:
fileID = fopen('data.bin', 'r');
data = fread(filelID, [1, inf], 'uint8');
fclose(filelD);
disp(data);
Python:
with open('fontawesome-webfont.bin', 'rb') as file:
data = file.read()
print(data)

e Example 7.34: Writing to a binary file

a');

MATLAB:

fileID = fopen('output.bin', 'w');

fwrite(fileID, [1, 2, 3, 4], 'uint8');

fclose(filelD);

Python:

with open('fontawesome-webfont.bin', 'wb') as file:
file.write(bytes([1, 2, 3, 4]))

Example 7.35: Reading a CSV file with headers

MATLAB:

data = readtable('data.csv');

disp(data);

Python:

import pandas as pd

data = pd.read csv('CHAPTER7 DATA.csv')

print(data)

Example 7.36: Writing a CSV file with headers

MATLAB:

data = table([1; 2; 3], {'A’; 'B'; 'C'},

'VariableNames', {'ID', 'Letter'});
writetable(data, 'output.csv');

Python:

import pandas as pd

data = pd.DataFrame({'ID': [1, 2, 3], 'Letter':
[IAI, IB|, ICI]})

data.to_csv('CHAPTER7 _DATA.csv', index=False)
Example 7.37: Reading a JSON file:

MATLAB:

data = jsondecode(fileread('data.json'));
disp(data);

Python:

import json

with open('lmb.json', 'r') as file:
data = json.load(file)
print(data)

Example 7.38: Writing to a JSON file

MATLAB:

data = struct('Name', 'Alice', 'Age', 30);

fid = fopen('output.json', 'w');

fprintf(fid, ‘%s’, jsonencode(data));

fclose(fid);

Python:

import json

data = {'Name': 'Alice', 'Age': 30}

with open('lmb.json', 'w') as file:
json.dump(data, file, indent=4)

Example 7.39: Reading an Excel file

MATLAB:

data = readtable('data.xlsx');

disp(data);

Python:

import pandas as pd

data = pd.read_excel('CHAPTER7 DATA.xlsx")

print(data)
Example 7.40: Writing to an Excel file
MATLAB:

data = table([1l; 2; 3], {'A";

'VariableNames', {'ID', 'Letter'});
writetable(data, 'output.xlsx');
Python:

import pandas as pd

data = pd.DataFrame({'ID': [1, 2,
['A", 'B', 'C'1})

IBI; Icl})

31,

'Letter':

data.to_excel('CHAPTER7 DATA.x1lsx', index=False)

Example 7.41: Reading a specific sheet from an Excel file:
MATLAB:

data = readtable('data.xlsx', 'Sheet', 'Sheetl');
disp(data);

Python:

import pandas as pd

data = pd.read _excel('data.xlsx"',
sheet_name='Sheetl"')

print(data)

Example 7.42: Writing to a specific sheet in an Excel file:

MATLAB:

data = table([1l; 2; 3], {'A"; 'B'; 'C'},
'VariableNames', {'ID', 'Letter'});

writetable(data, 'output.xlsx', 'Sheet', 'Sheetl');

Python:

import pandas as pd

data = pd.DataFrame({'ID': [1, 2, 3], 'Letter':

['A", "B, 'C'1})

with pd.ExcelWriter('CHAPTER7_DATA.xlsx') as writer:
data.to_excel(writer, sheet name='Sheetl’,

index=False)

Example 7.43: Reading a CSV file with custom delimiter:

MATLAB:

data = readtable('data.csv', 'Delimiter', ';');
disp(data);

Python:

import pandas as pd

data = pd.read csv('CHAPTER7 DATA.csv',
delimiter=";")

print(data)

o Example 7.44: Writing a CSV file with a custom delimiter:
MATLAB:
data = table([1; 2; 3], {'A’; 'B'; 'C'},
'VariableNames', {'ID', 'Letter'});
writetable(data, 'output.csv', 'Delimiter', ';');

Python:

import pandas as pd

data = pd.DataFrame({'ID': [1, 2, 3], 'Letter':
['A", "B, 'C'1D)

data.to _csv('CHAPTER7 DATA.csv', sep=";",

index=False)

e Example 7.45: Reading a CSV file with missing data:
MATLAB:

data = readtable('data.csv’, 'TreatAsMissing',
‘NA*);
disp(data);
Python:
import pandas as pd
data = pd.read csv('CHAPTER7 DATA.csv', na_values=
['NA"])
print(data)
e Example 7.46: Writing a CSV file with missing data:
MATLAB:
data = table([1; NaN; 3], {'A'; 'B'; 'C'},

'VariableNames', {'ID', 'Letter'});

writetable(data, 'output.csv');

Python:

import pandas as pd

import numpy as np

data = pd.DataFrame({'ID': [1, np.nan, 3], 'Letter':
['A", 'B', 'C'1})

data.to_csv('output.csv', index=False)

e Example 7.47: Reading a JSON file with nested data
MATLAB
data = jsondecode(fileread('data.json'));
disp(data.Address.City);

Python:
import json
with open('data.json', 'r') as file:
data = json.load(file)
print(data['Address']['City'])
e Example 7.48: Writing a JSON file with nested data:
MATLAB:
data = struct('Name', 'Alice', 'Age', 30, 'Address’,
struct('City', 'New York'));
fid = fopen('output.json', 'w');
fprintf(fid, ‘%s’, jsonencode(data));
fclose(fid);
Python:
import json
data = {'Name': 'Alice', ‘'Age': 30, 'Address’':
{'City': 'New York'}}
with open('output.json', 'w') as file:
json.dump(data, file, indent=4)
e Example 7.49: Reading a CSV file with headers and skipping rows:
MATLAB:
data = readtable('data.csv', 'HeaderlLines', 1);
disp(data);
Python:
import pandas as pd
data = pd.read csv('data.csv', skiprows=1)
print(data)
o Example 7.50: Writing a CSV file with headers and skipping rows:

MATLAB:

data = table([1l; 2; 3], {'A"; 'B'; 'C'},
'VariableNames', {'ID', 'Letter'});

writetable(data, 'output.csv', 'WriteVariableNames',
false);

Python:

import pandas as pd

data = pd.DataFrame({'ID': [1, 2, 3], 'Letter':
['A", 'B', 'C']})

data.to_csv('output.csv', index=False, header=False)
Example 7.51: Reading a CSV file with specific columns:

MATLAB:

data = readtable('data.csv’,
'SelectedVariableNames', {'ID', 'Letter'});
disp(data);

Python:

import pandas as pd

data = pd.read csv('data.csv', usecols=['ID"',
"Letter'])

print(data)

Example 7.52: Writing a CSV file with specific columns:

MATLAB:

data = table([1; 2; 3], {'A"; 'B'; 'C'},
'VariableNames', {'ID', 'Letter'});

writetable(data, 'output.csv', 'WriteVariableNames',
true);

Python:

import pandas as pd

data = pd.DataFrame({'ID': [1, 2, 3], 'Letter':
['A", 'B', 'C']})

data.to_csv('output.csv', columns=["'ID', 'Letter'],

index=False)

Example 7.53: Reading a CSV file with custom encoding:

MATLAB:

data = readtable('data.csv', 'Encoding', 'UTF-8');
disp(data);

Python:

import pandas as pd

data = pd.read csv('data.csv', encoding='utf-8'")
print(data)

Example 7.54: Writing a CSV file with custom encoding:

MATLAB:

data = table([1; 2; 3], {'A’; 'B'; 'C'},
'VariableNames', {'ID', 'Letter'});

writetable(data, 'output.csv', 'Encoding', 'UTF-8');

Python:

import pandas as pd

data = pd.DataFrame({'ID': [1, 2, 3], 'Letter':
['A", 'B', 'C'1})

data.to_csv('output.csv', encoding="utf-8",

index=False)

Example 7.55: Reading a CSV file with date parsing:

MATLAB:

data = readtable('data.csv', 'ReadVariableNames',
true, 'Format', '%{yyyy-MM-dd}D');

disp(data);

Python:

import pandas as pd

data = pd.read csv('data.csv', parse_dates=['Date'])
print(data)

Example 7.56: Writing a CSV file with date formatting:

MATLAB:

data = table(datetime('now'), [1; 2; 3], {'A'; 'B';
'C'}, 'VariableNames', {'Date', "'ID', 'Letter'});
writetable(data, 'output.csv', 'WriteVariableNames',
true);

Python:

import pandas as pd

from datetime import datetime

data = pd.DataFrame({'Date': [datetime.now()], 'ID':
[1, 2, 3], 'Letter': ['A', 'B', 'C']})
data.to_csv('output.csv', index=False)

Example 7.57: Reading a CSV file with custom date format:
MATLAB:

data = readtable('data.csv', 'ReadVariableNames',
true, 'Format', '%{dd/MM/yyyy}D');

disp(data);

Python:

import pandas as pd

data = pd.read csv('data.csv', parse_dates=['Date’'],
date_format="'%d/%m/%Y")

print(data)

Example 7.58: Writing a CSV file with custom date format:
MATLAB:

data = table(datetime('now'), [1; 2; 3], {'A'; 'B';
'C'}, 'VariableNames', {'Date', "'ID', 'Letter'});
writetable(data, 'output.csv', 'WriteVariableNames',
true);

Python:

import pandas as pd

from datetime import datetime

data = pd.DataFrame({'Date': [datetime.now()], 'ID':
[1, 2, 3], 'Letter': ['A', 'B', 'C']})
data.to_csv('output.csv', index=False,

date_format='%d/%m/%Y")

e Example 7.59: Reading a CSV file with custom missing values:
MATLAB:

data = readtable('data.csv’, 'TreatAsMissing’,
{'NA', 'NaN'});

disp(data);

Python:

import pandas as pd

data = pd.read csv('data.csv', na_values=['NA',
"NaN'])

print(data)

o Example 7.60: Writing a CSV file with custom missing values:
MATLAB:
data = table([1; NaN; 3], {'A'; 'B'; 'C'},
'VariableNames', {'ID', 'Letter'});
writetable(data, 'output.csv');
Python:
import pandas as pd
import numpy as np
data = pd.DataFrame({'ID': [1, np.nan, 3], 'Letter':
['A", "B, 'C'1})
data.to_csv('output.csv', index=False, na_rep='NA")
e Example 7.61: Reading a CSV file with custom quote characters:
MATLAB:

data = readtable('data.csv', 'Quote', '"');
disp(data);

Python:

import pandas as pd

data = pd.read csv('data.csv', quotechar="'"")
print(data)

o Example 7.62: Writing a CSV file with custom quote characters:

MATLAB:

data = table([1l; 2; 3], {'A"; 'B'; 'C'},
'VariableNames', {'ID', 'Letter'});

writetable(data, 'output.csv', 'Quote', '"');

Python:

import pandas as pd

data = pd.DataFrame({'ID': [1, 2, 3], 'Letter':
['A", 'B", "C']})

data.to_csv('output.csv', index=False,
quotechar=""")

Example 7.63: Reading a CSV file with custom comment characters:
MATLAB:

data = readtable('data.csv', 'Comment', '#');
disp(data);

Python:

import pandas as pd

data = pd.read csv('data.csv', comment="#")
print(data)

Example 7.64: Writing a CSV file with custom comment characters:
MATLAB:

data = table([1; 2; 3], {'A’; 'B'; 'C'},
'VariableNames', {'ID', 'Letter'});
writetable(data, 'output.csv', 'Comment', '#');

Python:
import pandas as pd
Create the DataFrame
data = pd.DataFrame({'ID': [1, 2, 3], 'Letter':
['A*, 'B", "C']})
Define the comment(s) you want to add
comments = [
"# This is a comment line 1",

"# This is a comment line 2"
]
Write the comments and DataFrame to the CSV file
with open('output.csv', 'w') as file:

Write the comments

for comment in comments:

file.write(comment + '\n")
Write the DataFrame to the file
data.to_csv(file, index=False)

Example 7.65: Reading a CSV file with custom thousands separator:
MATLAB:

data = readtable('data.csv', 'ThousandsSeparator’,
)

disp(data);

Python:

import pandas as pd

data = pd.read csv('CHAPTER7 _DATA.csv',
thousands=",")

print(data)

Example 7.66: Writing a CSV file with custom thousands separator:
MATLAB:

data = table([1000; 2000; 3000], {'A'; 'B'; 'C'},
'VariableNames', {'ID', 'Letter'});

writetable(data, 'output.csv', 'ThousandsSeparator',
)

Python:

import pandas as pd

Create the DataFrame

data = pd.DataFrame({'YearsExperience': [10, 20,
30], 'Salary': [10000, 20000, 30000]})

Format the 'Salary' column with a thousands
separator

data['Salary'] = data['Salary'].apply(lambda x: f"
{x:, ")

Write the DataFrame to a CSV file
data.to_csv('CHAPTER7_DATA.csv', index=False)

Conclusion

The fundamentals of Python file management, including reading from and
writing to files, were addressed in this chapter. Another topic we covered
was working with several data types, including CSV, JSON, XML, YAML,
and Pickle. These abilities are essential for Python jobs involving
serialization, configuration management, and data processing. You should
be able to manage a variety of file and data format operations in your
Python programs with the help of the examples given.

In the next chapter, we will understand the plotting and visualization in
MATLAB and Python in full detail.

Exercises

Basic file operations

1. Create a text file and write "Hello, World!" in both MATLAB and
Python.

2. Read the contents of an existing text file and display it.

3. Append new data to an existing text file without overwriting the
original content.

4. Write a script to count the number of lines in a text file.

5. Write a program to check whether a given file exists before opening it.
6. Copy the contents of one file to another file.

7. Delete a file if it exists using a script.

8. Read a file line by line and display each line on the screen.

9. Create a file and write the numbers from 1 to 100 in it.

10. Write a script to find the size of a file in bytes.

Working with different file modes

1. Open a file in write mode and then read its contents. Explain what
happens.

2.Open a file in append mode and write some data, then verify the
changes.

3. Use a script to open a file in binary mode and write some binary data.

4. Implement error handling when opening a non-existent file.

LI R e P |

5. Write a function to open a file in different modes ('r', 'W', 'a', 'tb', 'wb')
and explain their use cases.

Reading and writing CSV files

1. Write a MATLAB/Python script to create a CSV file containing student
names and scores.

2.Read a CSV file into a MATLAB table and a Python Pandas
DataFrame.

3. Add a new column to an existing CSV file.
4. Sort the contents of a CSV file based on a specific column.

5.Convert a CSV file into a dictionary (Python) or a structure
(MATLAB).

6. Write a script to read only specific rows and columns from a CSV file.

7. Filter rows in a CSV file based on a given condition (e.g., students who
scored above 90).

8. Write a program to find the average of numerical values from a specific
column.

9. Save a matrix (MATLAB) or a NumPy array (Python) into a CSV file.
10. Merge two CSV files into a single file.

Reading and writing JSON files

1. Write a JSON file containing information about three employees
(name, age, department).

2. Read a JSON file and extract specific fields.

3. Convert a JSON object into a dictionary (Python) or a structure

(MATLAB).

4. Modify a JSON file by updating an employee's details.

5. Convert a JSON file to a CSV file.

6. Convert a CSV file to a JSON file.

7. Write a script to pretty-print JSON data.

8. Write a function to check if a given JSON file is valid.

9. Extract only specific key-value pairs from a large JSON file.
10. Merge two JSON files into a single JSON file.

Handling binary files

1. Create a binary file and write an array of floating-point numbers to it.
. Read a binary file and display its contents.
. Store a MATLAB/Python matrix in a binary file and retrieve it.

B~ W N

. Compare the performance of reading/writing data in binary vs text
format.

. Write a script to determine the number of bytes in a binary file.
. Read an image file in binary mode and display its size.

. Convert a binary file to a text file and vice versa.

. Extract specific bytes from a binary file.

O 0 1 O Wn

. Write a MATLAB/Python program to encrypt and decrypt data before
writing to a binary file.

10. Write a script to find the checksum of a file.

Advanced file handling operations
1. Read multiple CSV files from a directory and merge them into one.
2. Read a large file line-by-line instead of loading it all at once.
3. Write a script to detect and remove duplicate records from a CSV file.
4. Create a log file that appends timestamps whenever the script runs.
5. Write a program to process and clean text data before saving it to a file.

Join our Discord space

Join our Discord workspace for latest updates, offers, tech happenings
around the world, new releases, and sessions with the authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/

CHAPTER &

Plotting and Visualization in
MATLAB

Introduction

Data visualization is an important aspect of exploring and understanding the
data, whether it is simple data in time series data, comparative analysis data
between diverse categories, or interconnected data between two variables.
MATLAB provides a robust set of functions to create 2D plots, which are
visually catching and easy to analyze, and we will be looking into them in
this chapter.

This aspect gives rise to three core and basic plot functions, such as plot, bar,
and scatter. Along with this, we will explore the capabilities, customized
options, and practical applications.

Structure

e 8.1. plot function as foundation of MATLAB visualization
8.2. Bar function and visualizing categorical data

8.3 Exploring variable relationship through the scatter function
8.4 Customization of plots in MATLAB
8.5. Introduction to 3D plotting

e 8.6. Specialized plots in MATLAB

Objectives

The objectives of this chapter are to equip readers with the practical skills
needed to create and customize various types of plots in MATLAB for real-
world applications. By learning basic 2D plotting functions such as plot, bar,
and scatter, you will be able to visualize data effectively. This chapter also
covers customization techniques, including adding titles, labels, and legends,
and adjusting line styles to enhance plot clarity and presentation.
Additionally, you will explore 3D plotting using functions like plot3,
surf, and mesh, enabling them to represent complex data in three
dimensions. Finally, the chapter introduces specialized plots such as
histograms, heatmaps, and polar plots, broadening your ability to analyze
and present data across different domains, from engineering and science to
finance and data analytics. Through these skills, you will gain the ability to
generate insightful visualizations that aid in data interpretation and decision-
making.

8.1 plot function as foundation of MATLAB
visualization

plot function, as shown in Figure 8.1, is one of the most frequently used
charts to visualize data in MATLAB. It is utilized in order to create 2D line
plots (continuous in nature). This 1s very useful to make it important
regarding functions, time-series data, and other related aspects.

The basic syntax plot(x, y) plots the values of vector y against vector X,
connecting the data points with straight lines. This type of visualization is
especially valuable in disciplines such as engineering, physics, economics,
and signal processing, where tracking changes over time or comparing
multiple datasets 1is crucial. The plot function supports various
customizations, such as line style, color, markers, and axis labeling, making
it a versatile option for both basic and advanced graphical representation of
data. Furthermore, it allows for the overlay of multiple datasets in a single

figure, aiding in comparative analysis and better interpretation of
relationships within the data:

X =0:0.1:10;
y = sin(x);
plot(x, y);

0.8
04 / \ \ |

02/ \ A

0.2 / X 4
0.4}
06 B

i Y \- |

Figure 8.1: plot() function implementation

Let us look at the customizations in detail:

e Addition of labels and titles: The plot function can be customized with
the help of labels and titles, as shown in Figure 8.2, as per the
requirements of the user. The basic code in this regard is as follows:

X = 0:0.1:10;

y = sin(x);

plot(x, y);

xlabel('X-axis (Time in seconds)');
ylabel('Y-axis (Amplitude)');
title('Sine Wave');

grid on;

Sine Wave

0.8

0.6 -

0.2

Y-axis (Amplitude)
=
I

A | | | | _ |
0 1 2 3 4 5 6 7 8 9 10

X-axis (Time in seconds)

Figure 8.2: Addition of labels and titles

e Customizing line styles, colors, and markers: Customization of the
MATLAB plots, as shown in Figure 8.3, is considered one of its
strengths. It can be done in a simple and easy-to-implement way, like:

o Line styles: '--' (dashed), "' (dotted), '-.' (dash-dot)
o Colors: 'r' (red), 'g' (green), 'b' (blue)
o Markers: 'o' (circle), '*' (star), 'x' (cross):
X = 0:0.1:10;
y = sin(x);
plot(x, y, 'r--o', 'LineWidth', 2);
xlabel('X-axis (Time in seconds)');
ylabel('Y-axis (Amplitude)');
title('Sine Wave');
grid on;

0.2 _;5] @ R il

072 1 LJ L -

Y-axis (Amplitude)

Sine Wave
I

X-axis (Time in seconds)

Figure 8.3: Customization of the plots

e Plotting multiple lines: To compare multiple datasets, use the plot

function with additional data, as shown in Figure 8.4:
X =0:0.1:10;

yl = sin(x);

y2 = cos(X);

plot(x, yl1, 'b', x, y2,
cosine

legend('sin(x)"', 'cos(x)'); % Add a legend for
clarity

g--'); % Plot sine and

0.8

0.6

0.4

0.2

=02

04}

0.6

-0.8

Figure 8.4: Multiple plots

Practical applications—trend analysis with plot: A scientist studying
population growth might use the plot function to visualize trends over
decades, as shown in Figure 8.5:

years = 2000:2010;

population = [2.9, 3.1, 3.5, 3.8, 4.2, 4.5, 4.9,
5.3, 5.8, 6.2, 6.7];

plot(years, population, '-0');

title('Population Growth');

xlabel('Year');

ylabel('Population (in billions)');

_Population Growth
| I]

Population (in billions)
= o o
R (5] [&] L&] =] L5] |
]]]]]

ot
o
|

3

2.5 : 1 | I 1 1 |
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
Year

Figure 8.5: Trend Analysis with plot

8.2 Bar function and visualizing categorical data

Bar charts are essential when working with categorical data or when
summarizing numerical data based on specific categories. MATLAB’s bar
function provides a convenient and flexible way to create bar plots that
visually represent the distribution, comparison, or frequency of data across
different groups. It is especially useful for highlighting differences between
discrete categories and understanding the underlying structure of the data.
The bar function supports both grouped and stacked bar plots, allowing
users to present multi-dimensional data in a clear and organized manner.
Grouped bar charts are helpful when comparing multiple sets of values side-
by-side within each category, while stacked bar charts are ideal for showing
how individual parts contribute to a whole. Users can customize the
appearance of the bars by adjusting their color, width, edge style, and labels
to enhance readability. The function also integrates well with other
MATLAB features, such as annotations, legends, and data tips, making it a
powerful tool for generating publication-quality graphics that convey
categorical insights effectively.

Let us look at them in detail:
e Creating a simple bar chart: Bar charts visually compare categorical

Values

data using rectangular bars, as shown in Figure 8.6. MATLAB's bar()
function creates vertical charts, while barh() makes horizontal ones:
categories = {‘A’, ‘B’, ‘C’, ‘D’};

values = [5, 8, 3, 6];

bar(values);

set(gca, 'XTickLabel', categories);

title('Bar Chart of Categories');

ylabel('Values');

Bar Chart of Categories :

A B c D

Figure 8.6. Simple bar chart

e Grouped and stacked bar charts: For comparing multiple groups or

subcategories, MATLAB supports grouped and stacked bar charts:

o Grouped bars: Grouped bars are a type of bar chart used to compare
multiple datasets or variables across the same set of categories, as
shown in Figure 8.7,. In MATLAB, grouped bar charts are created
using the bar function by passing a matrix as input, where each row
corresponds to a category and each column represents a different
group or variable. This results in bars being placed side by side for
each category, making it easy to visually compare the values across
different groups. Grouped bar charts are especially useful when
analyzing experimental results, survey data, or performance metrics

where comparisons across multiple conditions or groups are needed.
MATLAB allows customization of grouped bar charts, including
changing bar colors, adding labels, and including legends to clearly
differentiate each group, thereby enhancing the clarity and
interpretability of the data being presented:

values = [5 8; 3 6; 7 4];

bar(values, 'grouped');

legend('Group 1', 'Group 2');

title('Grouped Bar Chart');

Grouped Bar Chart

T

|-_W
{CGroup 2|

1 2 3

Figure 8.7: Grouped bar chart

o Stacked bars: Stacked bars are used to display the cumulative values
of multiple data series for each category, with each bar divided into
segments representing individual components, as shown in Figure
8.8. In MATLAB, stacked bar charts can be created by passing a
matrix to the bar function with the ' stacked' option. Each segment
within a bar shows how much it contributes to the total value for that
category. This type of visualization is useful for understanding both
the total and the part-to-whole relationships within the data. Stacked
bars are ideal for showing how different subgroups contribute to an
overall trend across categories:

14

values = [5 8; 3 6; 7 4];
bar(values, 'stacked');
legend('Group 1', 'Group 2');
title('Stacked Bar Chart');

Stacked Bar Chart

1 4 3

Figure 8.8: Stacked bar chart

e Practical applications: Some of the practical applications are as

follows.
o Market share with bar: Display and analysis of market share data

can be easily done by a business analyst using a bar in an efficient
way, as shown in Figure 8.9:

companies = {'Company A', 'Company B', 'Company
C'}s

marketShare = [40, 30, 30];

bar(marketShare);

set(gca, 'XTickLabel', companies);

title('Market Share Distribution');
ylabel('Percentage');

Market Share Distribution
I

i
(=]

n w W
w o [E]

Percentage
[a]
[=]

Company A Company B Company C

Figure 8.9: Market share analysis with bar chart

8.3 Exploring variable relationship through the
scatter function

The scatter function is considered very useful in order to examine the
relationships between two continuous variables. It plots different data points,
which makes it perfect to understand and identify trends, outliers, and
possible correlations in the dataset. Each point represents an observation
positioned according to its values on the x and y axes, as shown in Figure
8.10. This visualization is particularly helpful in regression analysis,
clustering, and identifying non-linear patterns. MATLAB also allows
customization of marker size, color, and style, enabling users to encode
additional dimensions of data for deeper analysis and better visual
representation:

X = rand(1, 100);
y = rand(1l, 100);
scatter(x, y);

xlabel('X-axis');
ylabel('Y-axis');

title('Scatter Plot');

i : Scatter Plot

i | |
0 01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X-axis

Figure 8.10: Scatter plot

Let us look at the option in detail:

e Adding color and size to points: Scatter plots can be customized by
using options regarding color and size to represent additional variables,
as shown in Figure 8.11:

X = rand(1, 100);

y = rand(1l, 100);

sizes = 50 + 100*rand(1, 100);

colors = rand(1, 100);

scatter(x, y, sizes, colors, 'filled');
colorbar;

@ L]
0.9~ 10.9
o o ® .
. @
0.8 ® o & 408
@ ® [] o ®
0.7~ L ® = 407
2] - & 2
0.6 - ® ® o 4 0.6
[]
0.5 - o e ¥ ° 05
@ > ® o ®
D.4e 2 - e ® & 0.4
L] []
. ® @ °
0.3+ 0.3
L] ®
0.2 - ® . 0.2
° s ©
0.1 y 2 © 0.1
2
[]
0 | 1 | | | | | ® | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 8.11: Scatter plots customization

e Practical application: Scatter diagram for correlation analysis: A
researcher wants to understand the relationship between two variables
considered as study hours and test scores via scatter plot, as shown in
Figure 8.12:
studyHours [1, 2, 3, 4, 5, 6, 7, 8];
testScores [50, 55, 60, 65, 70, 75, 80, 85];
scatter(studyHours, testScores, 'filled');
xlabel('Study Hours');
ylabel('Test Scores');
title('Relationship Between Study Hours and Test
Scores');

Relationship Between Study Hours and Test Scores

Test Scores
o o =J =J [--] [--]
(=] (3,1 (=] (4.1 (=) (4,1
ot = e = :
-

wn
(]

506 . - - - - -

-
2 3 4 5 6 7 8
Study Hours

Figure 8.12: Scatter diagram for correlation analysis

8.4 Customization of plots in MATLAB

A well-presented plot is not only a piece of the data representation but also
includes a story in it, which provides the communication of any complex-
natured data in an efficient way. Via the customization of plots in MATLAB,
clarity, readability, and the aesthetics of plots are effortlessly enhanced. Such
options include the addition of titles, labels, legends, and modification of
line styles. This section will provide a deep understanding on such features
which will guide the readers to create professional and visually appealing
plots.

8.4.1 Using titles to give context to plot

Title addition is a basic requirement from the viewer’s point of view. Via the
title, the main purpose and context of the plot can be shown which makes it
easy to understand. Without a title, a plot may appear ambiguous or
disconnected, making it harder for the reader to grasp what the data is
representing. In MATLAB, the title function is used to add a descriptive
heading at the top of the plot. This title can summarize the type of data being
displayed, the variables involved, or the key insight the plot aims to
communicate. A well-chosen title not only enhances clarity but also guides

the viewer’s attention and improves the overall effectiveness of the visual
presentation. Additionally, titles can be formatted using different fonts,
styles, and sizes, allowing readers to maintain consistency with presentation
standards. Overall, including a clear and concise title is an essential aspect of
professional and effective data visualization.

Let us look at titles in detail:
e Adding a title: The title function is mainly used to add a title of the plot

as per Figure 8.13. The program to add the title to the chart is as
follows:

X = 0:0.1:10;

y = sin(x);

plot(x, y);
title('Sine Wave');

4 : - Sine 'iWave -
0.8 _
0.6
04 : / | i =
0.2 ' / ' -

ol
0.2 .
04
0.6
-0.8

AL 1 1 1 I, S i | I 1

0 1 2 3 4 5 6 7 8 9 10

Figure 8.13: Adding a title in plot

e Customizing titles: The enhancements to the title can be done with
properties such as font size, weight, and color, as shown in Figure 8.14:
X 0:0.1:10;
y = sin(x);
plot(x, y);
title('Sine Wave');

0.8

0.6

0.4

0.2

0.4

-0.6

-0.8

title('Sine Wave', 'FontSize', 16, 'FontWeight',
'bold', 'Color', 'blue');

Sine Wave
T

0.2

| i

Figure 8.14: Customization of title in plot

Multiline titles: For further elaborated plots, multiline titles can also be
provided via a cell array, as shown in Figure 8.15:

X = 0:0.1:10;

y = sin(x);

plot(x, y);

title('Sine Wave');

title({'Sine Wave', 'Amplitude over Time'},
'FontSize', 14);

Sine Wave
___Amplitude over Time
1

0.8
0.6
0.4}

0.2}

0.2
0.4/
0.6
0.8}
A | | 1] S I ! ! 1 _
0 1 2 3 4 5 ; 7 8 9 10

Figure 8.15: Multiline titles

8.4.2 Using labels to identify axes

The x-axis and y-axis labels are important to interpret the scale and meaning
of the data. Labeling the axes is a critical component of any effective data
visualization, as it allows the viewer to accurately interpret the information
presented on the graph. The x-axis and y-axis labels provide context for the
data points by describing what each axis represents; be it time, frequency,
population, temperature, or any other variable. Without proper labeling, even
the most accurate and well-designed plots can become confusing or
misleading. In MATLAB, the xlabel and ylabel functions are used to
assign text labels to the horizontal and vertical axes, respectively. These
labels should be concise yet descriptive, clearly communicating the variable
name and, if applicable, its units of measurement (e.g., "Time
(seconds)", "Temperature (°C)"). Proper labeling enhances the
clarity of the plot and ensures that it can be understood independently,
without requiring additional explanation.

Let us look at labels in detail:
e Adding axis labels: x1abel and ylabel functions may be used to add
descriptive labels in a plot, as shown in Figure 8.16:
X = 0:0.1:10;
y = sin(x);

plot(x, y);

title('Sine Wave');
xlabel('Time (seconds)');
ylabel('Amplitude');

3 = SineWave : e
0.8 1
0.6 —
0.4
0.2
0
0.2
0.4
-0.6
-0.8
A L 1 ! 1] 1 I L !]
] 1 2 3 4 5 6 7 8 g 10

Time (seconds)

Figure 8.16: Adding axis labels

e Customizing labels: You can modify the label appearance using similar
properties as the title, as shown in Figure 8.17:
X = 0:0.1:10;
y = sin(x);
plot(x, y);
title('Sine Wave');
xlabel('Time (s)', 'FontSize', 12, 'FontWeight',
'bold', 'Color', 'red');
ylabel('Amplitude', 'FontSize', 12, 'FontWeight',
'bold', 'Color', 'blue');

Sine IWawe

. A
e o \ \ I
04 / ‘

0.2 - -' ’ il

Amplitude
(=]
T
1

0.4+ \
\ i ."x

-0'8 B .“\-\ . ,'.'] -]

Time (s)

Figure 8.17: Customizing labels

8.4.3 Using legends for multiple data series

When multiple datasets are plotted on the same graph, it becomes essential
to include a legend to clearly distinguish between them. A legend acts as a
key that identifies which graphical element corresponds to which dataset,
making the plot easier to interpret. Without a legend, the viewer may
struggle to understand the meaning of different lines, markers, or bar groups,
especially if they are visually similar. MATLAB’s legend function provides a
simple and effective way to add descriptive labels to each data series. Users
can specify custom text for each dataset, helping to explain what each line or
symbol represents. This is particularly useful in cases where the plot
includes results from different experiments, models, or conditions. Legends
can be placed in various locations on the plot, such as top-right, bottom-left,
or outside the axes, for optimal clarity.

Let us look at legends in detail:

e Adding a legend: The legend function associates labels with plotted
lines as shown in Figure 8.18:

X =0:0.1:10;
yl = sin(x);
y2 = cos(X);

1 - T i T T T e = I
0.8 - ‘
0.6 -
0.4
0.2

of
-0.2 |
0.4+

0.6 -

plot(x, y1, x, y2);
legend('sin(x)"', 'cos(x)');

,/ 3 N V4 i \ sin(x)

cos(x) |-

Figure 8.18: Adding a legend

Positioning the legend: Legends can be moved to different locations
using predefined options; "northwest’, "‘northeast’,
'southwest’, 'southeast' as provided in Figure 8.19:

X = 0:0.1:10;

yl = sin(x);

y2 = cos(x);

plot(x, y1, x, y2);

legend('sin(x)"', 'cos(x)', 'Location', 'northwest');

sin(x) | / / !
0.8 cos(x)| : ol N, A

0.2/ \ .

-0.2
0.4
0.6

-0.8

Figure 8.19: Positioning the legend

8.4.4 Using line styles to enhance plot readability

There exist diverse line styles in MATLAB. MATLAB permits
customization of line types, colors, and markers to make plots more
engaging and easier to interpret. By strategically combining solid ('-"),
dashed ('--'), dotted (':'), or dash-dot ('-.") lines with different colors and
marker symbols ('0', 's', '"*'), you can create clear visual distinctions between
multiple data sets on the same plot. This is particularly useful when
presenting complex data or comparing multiple trends in a single figure. For
example, you might use a solid red line with circle markers for experimental
data, while employing a dashed blue line for theoretical predictions, making
it immediately apparent which curve represents what. These styling options
are specified as a combined string argument in plot commands, such as
plot(x,y,'r--0") for a red dashed line with circle markers.

Let us look at them in detail:

e Changing line styles: MATLAB supports several predefined line styles
shown in Figure 8.20:

o Solid line: '-'
o Dashed line: '--'
o Dotted line: "'

o Dash-dot line: '-.'

X = 0:0.1:10;

yl = sin(x);

y2 = cos(x);

plot(x, y1, '--', x, y2, '-.");

0.8 -

0.6

0.4

0.2

0.2}

0.4

0.6 -

0.8 -

* Modifying line width: Thicker or thinner lines

1
1 2 3 4 5 6

Figure 8.20: Changing line styles

emphasis, as shown in Figure 8.21:

X =0:0.1:10;

yl = sin(x);

y2 = cos(x);

plot(x, y1, '--', 'LineWidth',2);

can be used for

0.8

0.6

0.4

0.2

0.2+ L

0.4

0.6

0.8/

e Adding markers: Through the markers, individual data points can be

Figure 8.21: Modifying line width

highlighted. Some of the common options are:

o Circle: 'o0'

o Star: '*'

o Square: 's'

o Diamond: 'd'

X = 0:0.1:10;

yl = sin(x);

y2 = cos(X);
plOt(X) yl: "O':
'MarkerkdgeColor',
'yellow');

'MarkerSize', 8,

'red’,

'MarkerFaceColor',

0.8 Q & .

0.6
0.2-¢
04

-0.6 -

-0.8 |-

0 1 2 3 4 5 6 7 8 9 10

Figure 8.22: Adding markers

8.4.5 A customized plot

Let us combine these customization options into a comprehensive example:
The sine and cosine waves plots are plotted with distinct line styles, as
shown in Figure 8.23. title, xlabel, ylabel, legend are also included
as customization:

% Data

X = 0:0.1:10;

yl = sin(x);

y2 = cos(x);

plot(x, vyl1, '-o', ‘'LineWidth', 2, 'MarkerSize', 6,
'"MarkerFaceColor', 'blue');

hold on;

plot(x, y2, '--', 'LineWidth', 2, 'Color', [0.8, 0.2,
0.2]);

hold off;

title('Comparison of Sine and Cosine Functions',
'"FontSize', 14, 'FontWeight', 'bold');

xlabel('X-axis (Time in seconds)', 'FontSize', 12);
ylabel('Y-axis (Amplitude)', 'FontSize', 12);

legend('sin(x)", "cos(x)"', "Location’, "southwest’,
'"FontSize', 12);

grid on;

axis([@ 10 -1.5 1.5]);

Comparison of Sine and Cosine Functions
1.5 T T T T

Y-axis (Amplitude}
f

—e—sin(x)
= = cos(x)

0 1 2 3 4 5 6 T 8 9 10

X-axis (Time in seconds)

Figure 8.23: Customized plot

8.4.6 Additional customization tips

Customizing plots in MATLAB allows users to create more visually
appealing and informative graphics tailored to specific needs. Beyond basic
elements like titles, labels, and legends, MATLAB offers a wide range of
customization options to enhance the clarity and aesthetics of a plot. Users
can modify line styles, marker types, and colors using properties such as
'LineStyle', 'Marker', and 'Color' to differentiate between datasets or
emphasize key points. Grid lines can be added using the grid on command,
which helps better align and read data values. The axes can also be adjusted
in terms of limits (x1im, ylim), tick marks, and scaling (linear or
logarithmic) to suit the data distribution. Additionally, annotations such as
arrows, text boxes, and shapes can be inserted using functions like
annotation and text to highlight specific features or add explanatory notes:

e Using grids: Adding grids enhances readability. A grid is as shown in
Figure 8.24.

X = 0:0.1:10;

yl = sin(x);

y2 = cos(x);

plot(x, y1, '--', 'LineWidth',2);
grid on;

grid minor;

Figure 8.24: Use of grids

Annotations: Annotations can highlight specific points or features:
X =0:0.1:10;

yl = sin(x);

y2 = cos(X);

plot(x, y1, '--', 'LineWidth',2);

grid on;

grid minor;

text(pi, @, ' \leftarrow Peak', 'FontSize', 12,
"Color', 'red');

b
0.8 ‘ . ’ \ E
& £ %

0.6+ ! \] \ -
0.2 ¥ : v
-0.2 ¢ ! 3

—ﬂﬁ - . \ £

-0.8 - A # =

Figure 8.25: Annotations in plot

8.5 Introduction to 3D plotting

3D plots are invaluable in scenarios where data relationships are not easily
discernible in two dimensions. From plotting trajectories to visualizing
surfaces, MATLAB simplifies the process of creating 3D visualizations.

Some common 3D plotting functions are:

plot3: Plots 3D lines or trajectories.

surf: Creates 3D surface plots with filled colors.

mesh: Similar to surf but creates a grid-like representation.

Using plot3 for 3D line plots: The plot3 function is ideal for plotting
curves or trajectories in 3D space.

Example: Plotting a Helix (see Figure 8.26):

t =0:0.1:10;
X = sin(t);

y = cos(t);
z = 1t;

plot3(x, y, z, '-o', 'MarkerSize', 8,
'MarkerFaceColor', 'red', 'LineWidth', 1.5);

Z-axis

xlabel('X-axis'); ylabel('Y-axis'); zlabel('Z-
axis');

title('3D Helix');

grid on;

3D Helix

o—o—9 0 —0—0 9 3

i A___.__.,._ro—— —01_._::)
—o o o o o o0
6
4-
2 M‘A_—;‘—‘p
0-l o o+ o+ o o o oo
1 T~ _
05 T et
o — e 0.5
S - 0
0.5 ~ 05
Y-axis -1 -1 X-axis

Figure 8.26: Plotting of Helix

Creating surface plots with surf: The surf function is used to create
3D surfaces, as shown in Figure 8.27, where the z-values represent the
height of the surface at each (x, y) point:

surf(X, Y, 2);

Example: Visualizing a mathematical function:

[X, Y] = meshgrid(-2:0.1:2, -2:0.1:2);

Z = X."2 +Y."2;

surf(X, Y, Z);

xlabel('X-axis');

ylabel('Y-axis');

zlabel('Z-axis');

title('Surface Plot of Z = X2 + Y*2');

Surface Plot of Z = X% + Y2

-1 - ﬂ—‘___\\‘}‘::‘_#_'____,_:—:i—;_ _1
s X-axis

Figure 8.27: Creating surface plots

e Customizing surface appearance: The surface appearance can also be
customized via colormap, shading, and lighting, etc.:
o Color maps: Change the colors using colormap (see Figure 8.28):
[X, Y] = meshgrid(-2:0.1:2, -2:0.1:2);
Z = X."2 + Y."2;
surf(X, Y, 2);
xlabel('X-axis');
ylabel('Y-axis');
zlabel('Z-axis"');
title('Surface Plot of Z = X*2 + Y*2');
colormap jet;

Surface Plot of Z = X* + Y2

Y-axis 2 2 X-axis

Figure 8.28: Customizing surface appearance

o Shading: Adjust shading for smoother visuals (see Figure 8.29):
[X, Y] = meshgrid(-2:0.1:2, -2:0.1:2);
Z = X.72 + Y.A2;
surf(X, Y, 2);
xlabel('X-axis');
ylabel('Y-axis');
zlabel('Z-axis');
title('Surface Plot of Z = X*2 + Y*2');
shading interp;

Surface Plot of Z = X% + Y2

A T " o5 °

= A

458
¥-axis 2 2 Xearls

Figure 8.29: Shading for smoother visuals

o Lighting: Add lighting effects (see Figure 8.30):
[X, Y] = meshgrid(-2:0.1:2, -2:0.1:2);
Z = X."2 + Y."2;
surf(X, Y, Z);
xlabel('X-axis');
ylabel('Y-axis');
zlabel('Z-axis');
title('Surface Plot of Z = X"2 + Y*2');
light;
camlight;
lighting phong;

Surface Plot of Z = X2 + Y?

0 T = 05

AT T, T D 2

Y-axis 2 2

X-axis

Figure 8.30: Lighting effects

e Using mesh for grid-like plots: The mesh function is similar to surf,
but it creates a wireframe representation instead of a filled surface.
mesh(X, Y, Z);

Example: Wireframe plot (see Figure 8.31):

[X, Y] = meshgrid(-2:0.1:2, -2:0.1:2);

Z = sin(X).*cos(Y);

mesh(X, Y, Z);

xlabel('X-axis');

ylabel('Y-axis');

zlabel('Z-axis"');

title('Mesh Plot of Z = sin(X) * cos(Y)');

Z-axis

Mesh Plot of Z = sin(X) * cos(Y)

Y-axis -2 -2 X-axis

Figure 8.31: Wireframe plot

e Customizing the mesh: After the creation of mesh plots, we will now
learn how this mesh plot can be customized, as shown in Figure §.32.
This customization is discussed in detail as follows:

o Grid colors: Modify the color of the grid lines:
[X, Y] = meshgrid(-2:0.1:2, -2:0.1:2);
Z = sin(X).*cos(Y);
mesh(X, Y, Z, 'EdgeColor', 'blue');
xlabel('X-axis');
ylabel('Y-axis');
zlabel('Z-axis');
title('Mesh Plot of Z = sin(X) * cos(Y)');

Z-axis

Mesh Plot of Z = sin(X) * cos(Y)

ot
£r
£
L7
L7 5058 e et
d%%?ﬁ%hgﬁﬁ%ﬁggﬁ‘

e

,’;f,:l 7550
N
o <> ’k‘

S R
SN
e SIS
s, ‘%'&%’o‘t
SCSCE AT AL T AL
L 7 TA D
f'Amﬁigg?
s

X-axis

Figure 8.32: Customizing the mesh

o Transparency: Add transparency to mesh (see Figure 8.33):
[X, Y] = meshgrid(-2:0.1:2, -2:0.1:2);
Z = sin(X).*cos(Y);
mesh(X, Y, Z);

xlabel('X-axis'); ylabel('Y-axis'); zlabel('Z-

axis');
title('Mesh Plot of Z = sin(X) * cos(Y)');
alpha(0.5); % 50% transparency

Mesh Plot of Z = sin(X) * cos(Y)

Z-axis

-0.5 -

Y-axis 2 2

X-axis

Figure 8.33: Add transparency to mesh

e Comparison of surf and mesh:

Feature surf mesh
Appearance Filled surface Wireframe grid
Customization Color maps, shading Grid color, transparency
Best For Continuous surfaces Structural representations

Table 8.1: Comparison table

e Combining 3D plot types: MATLAB allows you to overlay multiple
3D plot types to create hybrid visualizations, as shown in Figure 8.34.

Example: Combining surf and plot3:

[X, Y] = meshgrid(-2:0.1:2, -2:0.1:2);

Z = X."2 + Y."2;

surf(X, Y, Z, 'FaceAlpha', 0.7);

hold on;
t =0:0.1:10;

x = sin(t); y = cos(t); z = t;

plot3(x, y, z, 'r-', 'LineWidth', 2);

hold off;
xlabel('X-axis');

ylabel('Y-axis'); zlabel('Z-axis');
title('Combined Surface and Line Plot');

Combined Surface and Line Plot

Z-axis

R | ““-____q_q_h_:‘_::_#_____d__:—;'— = g -0.5
Y-axis -2 -2 ¥-axie

Figure 8.34: Multiple plots

8.6 Specialized plots in MATLAB

In MATLAB, specialized plots address particular visualization requirements,
enabling you to efficiently analyze and display various data kinds. The three
flexible and widely used plot types covered in this article include polar plots,
heatmaps, and histograms, among others. These plots offer distinct methods
for revealing trends and insights, which makes them essential resources for
analysts, engineers, and academics.

8.6.1 Using histograms to visualize data distributions
By splitting a dataset into bins and counting the number of data points in
each bin, histograms may be used to show the distribution of the dataset.
Histograms are therefore perfect for spotting trends like outliers, skewness,
and spread. Let us look at them in detail:
e Creating a basic histogram: Making histograms is easy with
MATLAB's histogram function as follows (see Figure 8.35):

data = randn(1, 1000);

histogram(data);

title('Histogram of Random Data');
xlabel('Value');
ylabel('Frequency');

140 !-Ilstngram of IRandnm IZlataI

120

100

Frequency
] 2

&

20

-4 -3 -2 -1 0 1 2 3 4
Value

Figure 8.35: Basic histogram

e Customizing histograms: Options for customization of the histogram
include changing the color, style, and quantity of bins (see Figure 8.36):
data = randn(1, 1000);
histogram(data, 'NumBins', 20, 'FaceColor', 'blue',
'"EdgeColor', 'black');
title('Customized Histogram');
xlabel('Value'); ylabel('Frequency');

Frequency

g

140 T r T T T T

120 -

100

Customized Histogram

40

20

-4 -3 -2 -1 0 1 2 3 4
Value

Figure 8.36: Customizing histograms

The explanation is as follows:
o NumBins: It controls number of bins.
o FaceColor and EdgeColor: It sets fill and edge colors of bars.

e Overlaying multiple histograms (see Figure 8.37):

datal = randn(1l, 1000);

data2 = 2 + randn(1, 1000);

hold on;

histogram(datal, ¢‘FaceColor’, f‘red’, f‘FaceAlpha’,
0.5);

histogram(data2, 'FaceColor', ‘'blue', 'FaceAlpha',
0.5);

hold off;

legend('Dataset 1', 'Dataset 2');

140 -

[Dataset 1
[pataset 2

120

100

80

&0

40

20

Figure 8.37: Overlaying multiple histograms

8.6.2 Using heatmaps to visualize matrix data

Heatmaps offer a color-coded representation of matrix data, with a color
intensity assigned to each cell. They are especially helpful for finding
correlations, patterns, and clusters in big datasets.

If the heatmap function is not recognized by your version of MATLAB
(likely because it is an older version), you can use imagesc instead to create
a similar visualization. However, imagesc is a simpler substitute and lacks
some features of heatmap, such as labeled axes, automatic color scaling for
categorical data, and interactivity (like tooltips). Let us see how to use
headmaps:

e Creating a basic heatmap: Make that the heatmap function is
recognized by MATLAB. If not, you might be using an outdated version
of MATLAB that does not support heatmaps (see Figure 8.38). In that
scenario, imagesc can be used as a substitute:
data = rand(10, 10);
imagesc(data);
colorbar;
title('Heatmap of Random Data');

Figure 8.38: Creating a basic heatmap

e Version check: Check your MATLAB version using the following if the
heatmap function is not recognized:

ver

It is advised to update MATLAB or use an alternative, such as imagesc, if
your version does not support heatmaps.

8.6.3 Using polar plots to visualize angular data

Polar plots are perfect for periodic data, directional patterns, and angular
relationships since they use radii and angles to describe the data. Typical
domains where polar plots are commonly used include antenna radiation
patterns, mechanical vibrations, wind directions, and navigation systems,
where angle-based visualization is essential.

To create a basic polar plot, use the polar function instead, if you are using
an older version of MATLAB where polarplot is not available (see Figure
8.39):

theta = linspace(@, 2*pi, 100);

rho = sin(2*theta);

polar(theta, rho);

title('Polar Plot of sin(2 \theta)');

Polar Plot of sin(2)

20
1

120 G0
0.8
7R ol
| \\ 0.6 \"‘lll
150 | \ / J 30

Hxhx.“_ _,-ffxi
180 — ——r— 0
.___,.ﬂ"'-.-- | --\--\-""\-\.

240 300

270

Figure 8.39: Polar plot

8.6.4 Error bar plots and representing variability

Error bar plots visualize data points along with their variability or
uncertainty, often used in scientific and engineering experiments. Error bar
plots visualize data points along with their variability or uncertainty, often
used in scientific and engineering experiments. In MATLAB, the
errorbar() function creates these plots by displaying vertical and/or
horizontal error bars around data points. The error bars can represent
different metrics of variability, including standard deviation, standard error,
confidence intervals, or measurement uncertainty (see Figure 8.40):

X = 1:5;

y = [2, 4, 6, 8, 10];

errors = [0.5, 0.6, 0.7, 0.8, 0.9];

errorbar(x, y, errors, 'o-', 'LineWidth', 1.5);
xlabel('X-axis');

ylabel('Y-axis');

title('Error Bar Plot');

4 Error Bar Plot
| s

10 f{,}
9- =5

Y-axis
t‘"\
Y
\

1 1 | | 1 i
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
X-axis

Figure 8.40: Error bar plots

Its applications are as follows:
e Displaying measurement uncertainties.
e Visualizing standard deviations or confidence intervals.

8.6.5 Stacked bar plots and comparing grouped data
Stacked bar plots represent multiple data series in one bar, showing the
contribution of each series to the total, as illustrated in Figure 8.41:

e Function: bar (with 'stacked'): MATLAB's bar function with
the 'stacked' option enables powerful comparative analysis by
displaying multiple data series as segmented columns. This visualization
method stacks different categories on top of each other within each bar:
data = [3 52, 46 3; 58 4];
bar(data, €‘stacked’);
xlabel(‘Categories’);

ylabel('Values');
title('Stacked Bar Plot');
legend('Series 1', 'Series 2', 'Series 3');

Stacked Bar Plot
13“...-.1...-1 e T

B Series 1
16 i series 2 |
[ISeries 3

14+

12~

Values

1 2
Categories

Figure 8.41: Stacked bar plot

e Applications:

o Comparing grouped data, such as sales by product categories.
o Visualizing cumulative contributions.

8.6.6 Pie charts and proportional data visualization

Pie charts, as shown in Figure 8.42, represent data as slices of a circle, with
each slice proportional to the data value. Let us look at their function and
application:

e Function: pie: MATLAB's pie function creates circular charts that
effectively represent parts-to-whole relationships, where each slice's arc
length corresponds to its percentage of the total:
data = [20, 30, 25, 25];
labels = {'Category A', 'Category B', 'Category C',
"Category D'};

pie(data, labels);
title('Pie Chart');

Pie Chart

Category A

Category D

Category B

Category C

Figure 8.42: Pie charts

e Applications:

o Visualizing proportions or percentages.
o Survey results or market share analysis.

8.6.7 Stem plots and visualizing discrete data

Stem plots show discrete data points connected to the baseline by vertical
lines, often used in signal processing. While both stem plots and bar plots
display values as vertical lines, bar plots use solid, filled rectangles that
represent the magnitude of a value over a categorical or continuous axis,
commonly used in statistical comparisons. In contrast, stem plots use thin
lines ending in a marker (usually a circle or dot) to emphasize individual,
discrete data points without implying continuity or grouping, making them
more suitable for time-series or indexed discrete signals.

e Function: stem: (see Figure 8.43)
X = 0:10;
y = sin(x);
stem(x, y, 'r', 'LineWidth', 1.5);
xlabel('X-axis');
ylabel('Y-axis');
title('Stem Plot');

Stem Plot
08
0.6
0.4 &
0.2 . "
W
E o I
F I
0.2 |
0.4
0.6
0.8} Z
-1 L 1 i . | =
0 1 2 3 4 5 6 7 B 9 10
X-axis

Figure 8.43: Stem plots

e Applications:

o Representing discrete data points.
o Analyzing sampled signals or sequences.

8.6.8 Contour plots and level curves

Contour plots display level curves of a 3D surface, making it easier to
understand variations in a scalar field. Its function and application is as
follows:

¢ Function: contour:

MATLAB's contour function transforms 3D scalar fields into insightful
2D level curve visualizations, ideal for analyzing topographic gradients
(elevation, temperature, or pressure fields), mathematical functions with
complex curvature, and scientific data. (see Figure 8.44)

[X, Y] = meshgrid(-3:0.1:3, -3:0.1:3);

Z = X.M2 + Y. 2;

contour(X, Y, Z);

xlabel('X-axis');

ylabel('Y-axis');

title('Contour Plot');

Contour Plot

Y-axis
=

-3 -2 -1 0 1 2 3
X-axis

Figure 8.44: Contour plot
e Applications:

o Visualizing topographic data.
o Heat distribution or scalar fields analysis.

8.6.9 Box plots and statistical distribution

Box plots, as shown in Figure 8.45, summarize the distribution of data using
five summary statistics: minimum, first quartile, median, third quartile, and
maximum.
e Function: boxplot:

data = randn(50, 3);

% Generate random data

boxplot(data, 'Labels', {'Group 1', 'Group 2',

"Group 3'});

title('Box Plot');

Box Plot

-4 = | 1 | —
Group 1 Group 2 Group 3

Figure 8.45: Box plot

e Applications:

o Comparing distributions of multiple datasets.
o Identifying outliers and variability.

8.6.10 Logarithmic plots and visualizing exponential data

Logarithmic plots help analyze data with large ranges or exponential
relationships, as shown in Figure 8.46. MATLAB's logarithmic plotting
functions (semilogx, semilogy, and loglog) transform axis scales to

reveal hidden patterns in data that span multiple orders of magnitude:
e Functions: semilogx, semilogy, loglog

o semilogx: Logarithmic scale on the x-axis.

o semilogy: Logarithmic scale on the y-axis.

o loglog: Logarithmic scale on x-axis and y-axis:
x = logspace(0.1, 2, 100);
y = X."2;
loglog(x, y, 'LineWidth', 1.5);
xlabel(‘Log(X)’);
ylabel(‘Log(Y)’);
title('Logarithmic Plot');

1°‘I? -) - o _ILpgarlltI-n{mlc Plot

>
,/’/f
; ~
'gﬂ'mz_ -
s - /
"
10! //
.-",-‘,-.’
100. - i i L I RS- -
10° 10" 10

Log(X)
Figure 8.46: Logarithmic plot

e Applications:

o Analyzing power laws or exponential trends.
o Visualizing frequency responses.

8.6.11 Quiver plots and visualizing vector fields

Quiver plots, as shown in Figure 8.47, represent vectors at discrete points in
2D or 3D space. The following points show its function and application:

e Function: quiver: The quiver function creates dynamic vector field
visualizations that display both magnitude and direction through arrow
markers:

[X, Y] = meshgrid(-2:0.5:2, -2:0.5:2);
u= -Y;

v = X;

quiver(X, Y, u, v);

xlabel('X-axis');

ylabel('Y-axis');

title('Quiver Plot');

25 Quwe.:r Plot
2 " —_—— 1
1.5] = — =
1 ! . —
0.5
2
z 0
}
-0.5
-4 - - ¥
B, == - >
1.5 L - 8 =
2 - =5
=25
2.5 2 1.5 1 0.5 0 0.5 1 1.5 2 2.5
X-axis

Figure 8.47: Quiver plot

e Applications:

o Displaying velocity fields in fluid mechanics.
o Analyzing vector fields in physics.

8.6.12 Waterfall plots and sequential surface representation

Waterfall plots, as shown in Figure 8.48, show a series of 2D slices stacked
along the z-axis. Let us see their function and application:

e Function: waterfall: The waterfall function creates distinctive

stepped 3D surface plots that maintain individual trace visibility:
[X, Y] = meshgrid(-2:0.1:2, -2:0.1:2);

Z = X."2 - Y."2;

waterfall(X, Y, Z);

xlabel('X-axis"');

ylabel('Y-axis');

zlabel('Z-axis');

title('Waterfall Plot');

Waterfall Plot
4
2
2
50 i
M
|
4 -l
2
1 || e - .
0 —0 0.5
-1 = et 0.5
= as I
Y-axis 2 2 X-axis

Figure 8.48: Waterfall plot

e Applications:

o Visualizing evolving surfaces over time.
o Analyzing time-dependent data.

8.6.13 Filled contour plots and enhanced contours
Filled contour plots, as shown in Figure 8.49, use color-filled areas to
represent levels of a scalar field:
e Function: contour: The contour function generates essential level-
curve visualizations that transform 3D surface data into interpretable 2D
maps:

[X, Y] = meshgrid(-3:0.1:3, -3:0.1:3);
Z = sin(sqrt(X.”2 + Y."2));
contourf(X, Y, Z, 20);

colormap jet;

colorbar;

xlabel('X-axis');

ylabel('Y-axis');

title('Filled Contour Plot');

Filled Contour Plot

X-axis

Figure 8.49: Filled contour plot

e Applications:

o Visualizing heat maps with gradients.
o Scalar field analysis.

8.6.14 Surface plot with contours

The surfc function in MATLAB combines a 3D surface plot with 2D
contour lines projected onto the base of the plot, as shown in Figure 8.50. It
is an extension of the surf function and is particularly useful for providing
additional context to the surface visualization by showing how values vary
in a 2D projection. This enhances 3D interpretation by clearly displaying

elevation levels or gradients on the base plane, making it easier to
understand the shape, slope, and variations of the surface, especially in
regions where the 3D view only may be ambiguous or visually cluttered.
surfc(X, Y, Z);
The explanation is as follows:
* X, Y, and Z: Matrices of the same size define the grid and the surface
heights.
e [f X and Y are not specified, MATLAB assumes a grid based on the size
of Z.
[X, Y] = meshgrid(-3:0.1:3, -3:0.1:3);
Z = X.A2 - Y.A2;
surfc(X, Y, 2);
xlabel('X-axis');
ylabel('Y-axis');
zlabel('Z-axis');
title('Surface Plot with Contours (surfc)');

Surface Plot with Contours (surfc)

Y-axis 43 Y-axis

Figure 8.50: Surface Plot with contours

8.6.15 Stair plot in MATLAB
A stair plot is a specialized 2D plot in MATLAB used to visualize discrete or

stepwise data, as shown in Figure 8.51. It connects data points with
horizontal and vertical lines, resembling a staircase, making it ideal for time
series data, piecewise functions, or sampled data that changes in discrete
steps:
stairs(X, Y);
The explanation is as follows:
e X: A vector specifying the x-coordinates.
e Y: A vector specifying the corresponding y-coordinates.
Let us look at how to create a basic stair plot:
X = 0:10;
y =[0, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89];
stairs(x, y);
xlabel('X-axis');
ylabel('Y-axis');
title('Basic Stair Plot');
grid on;

90 Basic Stair Plot

80

] 1 s 3 4 5 & T B b | 10
X-axis

Figure 8.51: Stair plot

MATLAB's stairs function enables clear comparison of multiple stepwise
data series by plotting them on shared axes, and preserving exact transition

points between discrete value, while maintaining visual separation through
customizable line styles and colors. It is particularly useful for analyzing
time-series measurements, digital signals, or threshold-based processes
where the timing and magnitude of step changes require precise comparison
without interpolation artifacts.

X = 0:10;

yl =11, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11];

y2 = [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89];

stairs(x, yl1, 'b-', 'LineWidth', 1.5);

hold on;

stairs(x, y2, 'r--', 'LineWidth', 1.5);

hold off;

xlabel('X-axis"');

ylabel('Y-axis');

title('Comparison of Two Data Series');

legend('Data Series 1', 'Data Series 2');

grid on;
90, Comparison of Two Data Series
. —Dal:a Saries 1| |

a0 - — -Data Series 2_:
70} 1

050

o

7

> 40|

30(-

20

Figure 8.52: Multiple stair plots

The following table provides a summarized description of specialized plots:

Plot type Purpose Best for
Error bar plot Show data variability or uncertainty Experimental results
Stacked bar plot Compare grouped contributions Categorical data
Pie chart Represent parts of a whole Proportional data
Stem plot Highlight discrete data points Signal processing
Contour/Contourf Show level curves or filled gradients Scalar field visualization
Box plot Summarize statistical data Comparing data distributions
Logarithmic plots Visualize exponential relationships Ig)ro(j:;rhiz\z;;w onential
Streamline plot Visualize flow in a vector field Fluid dynamics, wind flow
Quiver plot ‘I/);ZE)OI?S}I direction and magnitude of Velocity fields
Waterfall plot Sequential surface representation Time-dependent data visualization
Table 8.2 : Description of specialized plots
Conclusion

In this chapter, we explored the powerful capabilities of MATLAB for
plotting and data visualization. Starting with basic 2D plotting functions
such as plot, bar, and scatter, we learned how to effectively visualize
continuous and categorical data. We then covered essential customization
tools, including titles, axis labels, legends, and line or marker styles, which
play a key role in enhancing the readability and professionalism of plots.
The chapter also introduced 3D plotting functions like plot3, surf, and mesh,
which are invaluable when working with three-dimensional data or surfaces.
Additionally, we looked into specialized plots such as histograms for
frequency analysis, heatmaps for matrix data visualization, and polar plots
for angular data representation. These tools equip users with a wide range of
options to explore and present their data visually. By mastering these
visualization techniques, readers can gain deeper insights into their data,
communicate results more clearly, and support analytical decision-making.
Overall, the chapter has provided a solid foundation for effective data

plotting and graphical presentation in MATLAB. In the next chapter, we will
learn the data visualization techniques in Python along with a comparative
study in MATLAB and Python.

Exercises

1 Basic line plot:
a. Plot the function y = sin(x) for x ranging from 0 to 27t.
b. Label the axes and add a title to the plot.
2 Multiple functions on the same plot:
a. Plot y, = sin(x) and y, = cos(x) on the same graph for x € [0, 2x].
b. Add legends to differentiate the curves and use different line styles
and colors.
3 Bar plot of polynomial values:
a. Evaluate the polynomial y = x’- 2x? + x at integer values from -5 to 5.
b. Create a bar chart to display the values.
4 Plotting derivatives:
a. Plot the function y = e* and its derivative y'= e* on the same graph for
xe [-2,2].
b. Use legend and grid to make the plot more readable.
53D plot:

a. Use a mesh grid to define X and Y, then plot Z = sin(X* + Y?) using
surf.

b. Add a title and axis labels.
6 Parametric plot:
a. Plot the parametric equations x = cos(t), y = sin(t), t € [0,2x] to draw
a circle.
b. Use plot and label the axes.
7 Customizing a plot:

a. Plot y = tan(x) for x € [—§+ U.l,% - 0.1].

b. Add dashed grid lines, set axis limits, and change the font size of
labels and title.

8 Generate grouped bar plots for two datasets:
a.A=1[3,5,2,7]
b. B=1[4,6,1,8] Add labels, legends, and a title.

c. Generate a histogram for 1000 random values from a normal
distribution.

d. Create a box plot of randomly generated data grouped into 4
categories.

CHAPTER 9

Plotting and Visualization in
Python

Introduction

Data visualization serves as a critical bridge between raw data and
actionable insights, transforming complex numerical information into
intuitive graphical representations. This chapter provides a comprehensive
exploration of Python's powerful visualization ecosystem while drawing
insightful comparisons with MATLAB's established plotting capabilities.

Modern data analysis demands more than just computational tools; it
requires effective communication of results. Python has emerged as a
dominant force in scientific visualization, offering libraries that combine
MATLAB's mathematical precision with open-source flexibility and web-
ready interactivity. We begin by establishing Python's core visualization
paradigm through Matplotlib, the foundational plotting library that enables
MATLAB-style figures with Python's syntax. The discussion then progresses
to advanced statistical visualization with Seaborn and interactive web-based
plotting with Plotly.

A unique feature of this chapter is its systematic comparison between Python
and MATLAB implementations. Through parallel code examples and output
visualizations, we demonstrate how Python replicates, and often extends
MATLAB's renowned plotting functionality.

The chapter progresses from basic line plots to advanced 3D visualizations,
emphasizing customization techniques that meet publication-quality
standards. Practical examples span fundamental mathematical functions,
statistical distributions, and real-world datasets, with each concept illustrated
through dual Python/MATLAB implementations.

Structure

In this chapter, we will learn about the following topics:
e O.1. Data visualization and libraries in Python
e 0.2. Basic plotting in Python with Matplotlib
e 0.3. Customizing plots in Python
e 9.4, Comparison of examples via MATLAB and Python

Objectives

This chapter provides a comprehensive guide to data visualization
techniques in Python while conducting a systematic comparison with
MATLAB's plotting capabilities. The content is structured to take readers
from basic concepts to advanced applications, beginning with an
introduction to Python's visualization ecosystem and its core libraries;
Matplotlib for basic plotting, Seaborn for statistical graphics, and Plotly for
interactive visualizations. This chapter then progresses through essential
plotting techniques, demonstrating how to create and customize various
chart types, including line plots, bar charts, scatter plots, and histograms. A
dedicated section focuses on advanced customization options to enhance
visual appeal and clarity of plots. The comparative analysis forms a key
component of this chapter, where we will examine side-by-side
implementations of visualization tasks in Python and MATLAB,
highlighting their respective strengths in handling different types of data
representation. Through practical examples ranging from basic function
plotting to complex 3D visualizations and statistical graphics, you will have
proficiency in selecting and applying appropriate visualization tools. The
chapter aims to equip researchers, engineers, and data scientists with the

skills to effectively communicate data insights, while providing MATLAB
users with a clear pathway to transition to Python's visualization ecosystem.

9.1 Data visualization and libraries in Python

An important tool to evaluate and display the data is considered as data
visualization. One of the most commonly used computer languages for data
analysis is Python, which contains a wide library to produce visually
appealing and elaborative visualizations. Such packages contain classy
frameworks for statistical and interactive visualizations and basic plotting
tools. The tree most used Python libraries for the data visualization
explained in this chapter are Matplotlib, Seaborn, and Plotly. These libraries
fulfill almost all visualization requirements in research, engineering, and
data science.

9.1.1 Importance of data visualization

Data visualization fulfills various purposes outlined as follows:
e Exploration: To identify the trends, patterns, and outliers in datasets.
e Communication: To present results in a clear and impactful approach.
e Decision-making: It supports informed validations via visual insights.

Via converting raw data into graphical representations, visualization fills the
gap between numbers and stories.

9.1.2 Libraries for data visualization in Python

Python introduces diversified libraries to create static and interactive plots.
The three most basic used libraries are mentioned as follows:

e Matplotlib: It is the foundation library to create 2D and basic 3D plots.

e Seaborn: It is formed on Matplotlib. It simplifies the formation of
statistical plots.

e Plotly: It is ideal to create interactive and web-based visualizations.

9.1.3 Matplotlib as the foundational library

It is a flexible package to create charts. Matplotlib is considered as a base for
various Python visualization tools. A wide array of static and interactive

plots can be created via it.
Its features are:

e High customization possibility.

e 2D and 3D plotting support.

e Seamlessly compatibility with NumPy and Pandas.

Let us see how to create basic visualizations:

e Line plot: A line plot is one of the most fundamental and widely used
visualization techniques in data analysis. It is particularly useful for
displaying trends over time, comparing variables, and identifying
patterns in sequential data, as shown in Figure 9.1. Python’s Matplotlib

library provides a simple yet powerful way to create line plots with
customizable features:

import matplotlib.pyplot as plt

x = [1, 2, 3, 4, 5]

y = [2, 4, 6, 8, 10]

plt.plot(x, y, marker='0', color="blue',
linestyle="--', linewidth=2)
plt.title('Line Plot Example')
plt.xlabel('X-axis"')
plt.ylabel('Y-axis"')

plt.grid(True)

plt.show()

Note:

X, y: Data points for the X and Y axes

Marker='o': Marks each data point with a circular marker
Color='blue': Sets the line color to blue

Linestyle='--": Dashed line style connecting the points

Linewidth=2: Sets the thickness of the plotted line to 2

Line Plot Example
10 - L

Y-axis
an
a

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
X-axis

Figure 9.1: Line plot

e Bar plot: Bar plots, shown in Figure 9.2, in Python provide an essential
visualization tool for comparing categorical data through rectangular
bars with lengths proportional to the values they represent. These plots
are particularly valuable for business analytics, survey results, and
performance metrics, allowing clear comparisons across different
groups or time periods. Using Matplotlib's plt.bar() function, users
can create basic vertical bar charts with customizable colors, widths,
and borders, while plt.barh() generates horizontal versions ideal for
longer category labels. More advanced implementations leverage
Seaborn's sns.barplot() for statistical visualizations with built-in
confidence intervals and grouping capabilities:
categories = ['A', 'B', 'C', 'D']
values = [5, 7, 3, 8]
plt.bar(categories, valuess, color='purple')
plt.title('Bar Chart Example')

plt.xlabel(‘Categories”’)
plt.ylabel(‘Values’)
plt.show()

Note:
Categories: Labels for each bar on the X-axis (A', 'B', etc.)
Values: Heights of each bar corresponding to the categories

Color="purple': Sets the fill color of the bars to purple

Bar Chart Example
S -

7-

6 -

5 -

s

3

5

1 -

0- : . : .
A B ¢ D

Categories

Values

Figure 9.2: Bar plot

9.1.4 Seaborn and statistical data visualization

Seaborn was introduced mainly to visualize statistical aspects. It is based on
Matplotlib. It has a high-level interface which makes it helpful for the
creation of intricate plots.

Its features are as follows:
e Beautiful default styles.
e Simplified plotting syntax.
e Support for statistical data visualizations like box plots, violin plots, and
pair plots.
Let us learn how to create visualizations with Seaborn:

e Scatter plot and regression line: Scatter plots, as shown in Figure 9.3,
with regression lines in Python, provide a powerful way to visualize
relationships between two continuous variables while quantifying their
correlation. Using libraries like Matplotlib and Seaborn, analysts can
create scatter plots that plot individual data points as coordinates, then
overlay a linear regression line to reveal trends and predict patterns. The
Seaborn library's sns.regplot() function is particularly useful as it
automatically calculates and plots the regression line along with a
confidence interval band, while also handling the scatter points
visualization in a single command. This combined visualization helps
identify the strength and direction of relationships, whether positive,
negative, or neutral, while the regression line's slope indicates the rate
of change between variables:
import seaborn as sns
import pandas as pd

data = pd.DataFrame({

'X': [5, 7, 8, 7, 2, 17, 2, 9, 4, 11],

'Y': [99, 86, 87, 88, 100, 86, 103, 87, 94, 78]
})

sns.scatterplot(data=data, x="'X', y="'Y"',
color="green', s=100)

plt.title('Scatter Plot Example')
plt.show()

Scatter Plot Example

=
100- @
3
95 -
&
>~ g0 -
> ® o
& &
85 -
80 -
e
2 4 6 8 10 12 14 16
X

Figure 9.3: Scatter plot

e Heatmap: Heatmaps in Python provide an intuitive and visually
compelling way to represent complex matrix data through color
gradients, where each cell's color intensity corresponds to its value.
These versatile visualizations, as shown in Figure 9.4, are particularly
valuable for identifying patterns, correlations, and outliers in
multidimensional datasets across various domains including finance,
bioinformatics, and machine learning. Python's visualization ecosystem
offers multiple approaches to creating heatmaps, with Seaborn being the
most popular choice for statistical heatmaps through its
sns.heatmap() function, which automatically handles data
normalization and color mapping while supporting annotations. For
more basic implementations, Matplotlib's plt.imshow() can generate
heatmap-style displays with customizable colormaps. When interactivity
is required, Plotly provides dynamic heatmaps with hover tooltips and
zoom capabilities. Advanced applications leverage Seaborn's

clustermap() for hierarchical clustering visualizations or integrate
with Pandas DataFrames for seamless plotting of correlation matrices:
import seaborn as sns

import numpy as np

data = np.random.rand(10, 10)

sns.heatmap(data, annot=True, cmap='coolwarm',
linewidths=0.5)

plt.title('Heatmap Example"')

plt.show()

Heatmap Example

& 05405? 0.4 ‘g‘&:ﬂqa 0.6

o RO g o

m -0.58 0.67 0.48 0.9510.022 0.98

0.8

- 0.6
< 0.2 0.44 0.64 'u.3a- 0.6 q.aa_ 0.22
- 0.44 il:e] 0.59 0.35 0.55 0.63

- 0.4

o -l 0.6 041 [EL] 0.54 0.61 0.63 0.57 v

m E}E 039 0.4 0.51 0.48 0.38 ﬂBd :]15 0.51

- T o ﬂﬁﬁﬂﬂﬂm

Figure 9.4: Heatmap via Seaborn

- 0.6 i&.—ﬂs

9.1.5 Plotly and interactive visualizations

A library called Plotly is used to make interactive visuals. Scatter plots, line
plots, bar charts, and 3D plots are among the many chart types it supports.
Plotly plots are perfect for dashboards and interactive reporting since they

can be integrated into web apps.
Some key features are as follows:

e Interactive plots with zoom, pan, and hover functionalities.

* Easy integration with Jupyter Notebooks.

e Support for web-based visualization.

Let us create visualizations with Plotly:

e Interactive line plot: Interactive line plots, as shown in Figure 9.5, in
Python enable data exploration through zooming, panning, and hover
tooltips that reveal precise values. Plotly Express offers particularly
simple syntax for generating interactive plots with just a few lines of
code, while supporting animations and dropdown menus for comparing
multiple trends. These features make interactive line plots invaluable for
dashboards, exploratory analysis, and presentations where static images
would limit insight discovery. Unlike MATLAB's static plots, Python's
interactive options integrate seamlessly with web applications,
providing a more immersive analytical experience:
import plotly.express as px
x = [1, 2, 3, 4, 5]

y = [10, 20, 30, 40, 50]

fig = px.line(x=x, y=y, title='Interactive Line
Plot"')

fig.show()

Interactive Line Plot

Figure 9.5: Interactive line plot

e 3D scatter plot: 3D scatter plots in Python, as shown in Figure 9.6,
provide powerful visualization of multivariate relationships by
projecting data points in three-dimensional space. These plots are
particularly useful for identifying clusters, outliers, and spatial patterns
in scientific data, machine learning features, or engineering simulations.
Python's 3D visualization capabilities often surpass MATLAB's in terms
of customization and interactivity, especially when integrated with
Jupyter Notebooks or web dashboards:
import plotly.express as px
import pandas as pd

data = pd.DataFrame({
'X': [5, 7, 8, 7, 2, 17, 2, 9, 4, 11],
'Y': [99, 86, 87, 88, 100, 86, 103, 87, 94, 78],
'z': [10, 20, 15, 30, 25, 35, 40, 45, 50, 60]

})

fig = px.scatter_3d(data, x='X', y='Y', z='Z",
color="2")
fig.show()

50
50
40
6 £
Fd
Y F ®
30
A * e
@
A 20
g
& o
o &
n & 10

Figure 9.6: 3D scatter plot

e Comparing libraries: Matplotlib, Seaborn, and Plotly are three popular
Python libraries for data visualization, each with distinct strengths.
Matplotlib is a highly customizable, low-level library that provides
extensive control over plot elements, making it ideal for creating
complex and publication-quality figures. Seaborn, built on top of
Matplotlib, simplifies the creation of statistical visualizations with high-
level functions, attractive default styles, and built-in support for pandas
DataFrames. In contrast, Plotly specializes in interactive, web-based
visualizations, enabling dynamic zooming, hovering, and click
interactions, which are particularly useful for dashboards and web
applications. While Matplotlib and Seaborn are better suited for static
plots, Plotly excels in interactivity and is often integrated with web
frameworks like Dash. Let us look at the three libraries in detail in the
following table:

Feature Matplotlib Seaborn Plotly

Purpose General-purpose plotting | Statistical visualizations Interactive visualizations

Ease of use Requires detailed coding | Simplified, high-level API |Intuitive for interactivity

Interactivity Limited Limited High

Best for what Static visualizations Statistical data Dashboards, web visuals

Table 9.1: Comparison of different Python libraries

9.2 Basic plotting in Python with Matplotlib

One of the most important components of Python data visualization is
plotting, and Matplotlib is a powerful package that offers a variety of tools
for making both simple and complex representations. Due to its ease of use
and versatility, Matplotlib is a well-liked option for making 2D plots,
whether you are presenting findings or exploring data.

Plot, bar, and scatter are some of the fundamental plotting tools covered in
this section along with examples and best practices for producing clear,
impactful visualizations.

9.2.1 Introduction to Matplotlib

A popular Python package for making static, animated, and interactive
visualizations is called Matplotlib. It supports a wide variety of plot kinds
and 1s quite customizable. Make sure Matplotlib is installed before
beginning to use any particular functions:

pip install matplotlib

Import Matplotlib’s pyplot module, which contains most plotting
functions:

import matplotlib.pyplot as plt

Note: Include % matplotlib inline at the beginning of your Jupyter Notebook to ensure that
plots display correctly within the notebook.

Let us look at different plots in detail:

e Line plots with plot: This plot function is the most basic way to create
a 2D line plot, as shown in Figure 9.7. It is ideal for visualizing data
trends or relationships. The plot function in Matplotlib is the
fundamental method for creating 2D line plots, making it ideal for
visualizing trends, relationships, or time-series data. By simply
providing x and y values, users can generate a line graph that connects

data points sequentially, allowing for clear observation of patterns,
fluctuations, or correlations. Customization options include adjusting
line styles (solid, dashed, dotted), colors, markers, and labels, enabling
detailed and publication-ready visualizations. Since Matplotlib is a
versatile and low-level library, plot serves as the backbone for many
other plotting functions, including those in Seaborn, which builds on
Matplotlib to simplify statistical visualizations.

import matplotlib.pyplot as plt

Sample data

x = [0, 1, 2, 3, 4, 5]

y = [0, 1, 4, 9, 16, 25]

Creating a line plot

plt.plot(x, y, label='y = x*2', color='blue’,
linestyle="--', marker='0")

Adding title and labels

plt.title("Line Plot")

plt.xlabel("X-axis")

plt.ylabel("Y-axis")

Display legend

plt.legend()

Show plot

plt.show()

Line Plot

25- -@- V=x"2 "
I,
i
i
'
/
20 - ff
/
/
,
”f

15 Vi
0 L
G 2
- /#z

10 - -

_®
’f
/,
_ff
5 J.,.—"
-l""ll.
————— o
0 &-"
0 1 2 3 4 5
X-axis

Figure 9.7: Line plot with plot

e Bar plots with bar: Bar plots are perfect for comparing categorical data
or summarizing discrete values.

e Vertical bar plot: Vertical bar plots in Python, as shown in Figure 9.8,
effectively compare categorical data using rectangular bars extending
upward from the x-axis, with heights proportional to the values they
represent. Created using Matplotlib's plt.bar() function or Seaborn's
sns.barplot(), these plots are ideal for visualizing discrete
comparisons like sales by product, survey results, or performance
metrics across groups. Key customization options include bar colors,
widths, edge styles, and value labels, while Seaborn adds statistical
features like error bars. Vertical bars provide clearer value comparisons
than horizontal versions when category names are short, making them a
staple in reports and presentations. Python's implementation offers more
styling flexibility than MATLAB's basic bar() function, particularly
when integrated with Pandas DataFrames for streamlined data-to-

visualization workflows:

categories = ['A', 'B', 'C', 'D']

values = [5, 7, 3, 8]

plt.bar(categories, values, color="teal')
plt.title("Vertical Bar Plot")
plt.xlabel("Categories")
plt.ylabel("Values")

plt.show()

Vertical Bar Plot

A B C D

Categories

Values
) L . un [=)] |

(o

]

Figure 9.8: Vertical bar plot

e Horizontal bar plot: Horizontal bar plots in Python, as shown in Figure
9.9, provide an effective way to visualize categorical comparisons,
particularly when dealing with long category labels or numerous groups.
Using Matplotlib's plt.barh() function or Seaborn's
sns.barplot() with orientation adjustment, these plots display bars

extending horizontally from the y-axis, with lengths representing
quantitative values. This orientation improves readability for lengthy
text labels by providing ample space along the vertical axis, while
maintaining clear value comparisons through bar lengths. Horizontal
bars are especially useful for ranking data, survey results with many
categories, or any comparison where the natural reading flow benefits
from left-to-right presentation:

plt.barh(categories, values, color='orange')
plt.title("Horizontal Bar Plot")

plt.xlabel("Values")

plt.ylabel("Categories")

plt.show()

Horizontal Bar Plot

Categories

Values

Figure 9.9: Horizontal bar plot

e Scatter plots with scatter: Scatter plots, as shown in Figure 9.10,
display individual data points, making them ideal for exploring
relationships between variables.

Example:

import numpy as np

Generating random data

X = np.random.rand(50)

y = np.random.rand(50)

sizes = np.random.rand(50) * 100 # Bubble sizes
colors = np.random.rand(50) # Bubble colors

plt.scatter(x, y, s=sizes, c=colors, alpha=0.7,

cmap="viridis"')
title("Scatter Plot Example")

colorbar(label="'Color Scale') # Add a color bar

Scatter Plot Example

plt.
plt.xlabel("X-axis")
plt.ylabel("Y-axis")
plt.
plt.show()
1.0 -
@ &
0.6 -
0.6 -
.% °
>t
0.4- @
® .
0.2 - ’
@
0.0- i
0.0 0.2

&
& -0.8
&
- 0.6 @
= 3
un
@ ® E
L]
@ 0.4 ©
L]
)
® - 0.2
@ &
@
@
0.4 0.6 0.8 1.0
X-axis

Figure 9.10: Scatter plot

9.3 Customizing plots in Python

A main aspect regarding data analysis and the story is considered data
visualization. Matplotlib package of Python provides in-depth customization
options in the creation of more impactful and clear plots. Aesthetic and
educational aspects of the plots can also be produced with components such
as titles, labels, legends, and styles. This chapter provides such important
Matplotlib customization aspects and gives insightful examples to create
impactful plots. Let us look at the details:

e Adding titles to your plots: A title summarizes the goal and
background of your story and acts as its headline. It enables visitors to
rapidly understand the purpose of the visualization.

* Adding a simple title: The title() function allows you to add a title
to the top of your plot, as shown in, as shown in Figure 9.11:
import matplotlib.pyplot as plt
x = [0, 1, 2, 3, 4]

y =[0, 1, 4, 9, 16]

plt.plot(x, y)

plt.title("Simple Line Plot") # Adding a title
plt.show()

Simple Line Plot
16 -

14 -
1=

10 -

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Figure 9.11: Simple Line Plot

e Customizing title appearance: Customizing plot titles in Python
enhances readability and wvisual appeal. Using Matplotlib's
plt.title(), you can adjust font size (fontsize=14), weight
(fontweight="bold'), color (color='red'), and positioning
(loc="1left") to create professional-looking visualizations:
plt.title("Customized Title", fontsize=16,
fontweight="bold', loc="left', color='blue')

The explanation is as follows
o fontsize: Adjusts the font size.
o fontweight: Options include 'light', normal’, and "bold'.
o loc: Aligns the title to 'center’, 'left', or 'right'.
o color: Changes the color of the text.
e Adding axis labels: Labels for the X and Y axes provide critical

information about the data being visualized. They clarify what each axis
represents and the units of measurement.

e Adding basic labels: The x1abel() and ylabel() functions are used
to add axis labels.
plt.plot(x, y)
plt.xlabel("X-axis: Input Values") # Label for the
X-axis
plt.ylabel("Y-axis: Squared Values") # Label for
the Y-axis
plt.show()

16 -
14 -

12 -

10~

Y-axis: Squared Values

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
X-axis: Input Values

Figure 9.12: Customization of plot

e Customizing axis labels: To make axis labels more readable and
visually appealing, you can customize their font size, color, and
positioning.
plt.xlabel("Input (X)", fontsize=12, color='green',
labelpad=10)

plt.ylabel("Output (Y)", fontsize=12,

color="purple', labelpad=10)

The explanation is as follows:

o fontsize: Sets the font size of the label.

o color: Changes the text color.

o labelpad: Adjusts the distance between the label and the axis.
Rotating axis labels: For plots with crowded labels, rotating the text
can improve readability.

categories = ['January', 'February', 'March’,
"April', 'May']

values = [5, 7, 8, 6, 9]

plt.bar(categories, values)
plt.xticks(rotation=45) # Rotate X-axis labels by
45 degrees

plt.show()

o Md = h
L] [} 1 L]

Figure 9.13: Rotation of axis labels

e Adding and customizing legends: When displaying several datasets on
a single plot, legends are crucial. They assist viewers in determining
which line, bar, or point relates to which data.

e Adding a basic legend: Use the label parameter within plotting
functions, as shown in Figure 9.14 to define legend labels and the
legend() function to display them:
plt.plot(x, y, label='y = x*2")
plt.plot(x, [val**3 for val in x], label='y = x"3")
plt.legend() # Display the legend

plt.show()
—_— = X2
60- — y=x"3
50 -
40 -
30 -
20 -

10 -

0.0 0.5 10 1.5 2.0 2.5 3.0 3.5 4.0

Figure 9.14: Adding legend

e Customizing legends: You can control the position, font size, and
appearance of the legend using additional parameters.
plt.plot(x, y, label='y = x*2")
plt.plot(x, [val**3 for val in x], label='y = x"3'")
plt.legend(
loc="upper left', # Legend position
fontsize=10, # Font size

title="Legend Title", # Add a title to the
legend

shadow=True, # Add a shadow effect

frameon=True # Add a border around the
legend

)
plt.show()

Legend Title |
Al - — y=x"2
—_— =3

et

40
3 -
20 -

10 -

/

0.0 0.5 1.0 15 2.0 2.5 3.0 35 4.0

Figure 9.15: Customization of legends

e Customizing plot styles: Matplotlib provides a variety of styling
options to ensure your plots match your desired aesthetic or branding.

e Line styles and colors: Modify line style, color, and width to
distinguish different datasets: (see Figure 9.16)
plt.plot(x, y, linestyle='--', color='red',
linewidth=2, label='Dashed Line')
plt.legend()
plt.show()

16 -

14 -

12:-

10 -

= = Dashed Line Y

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Figure 9.16: Line styles and colors

o linestyle: Options include '--' (dashed), '-.' (dash-dot), ":' (dotted).

o color: Use color names ('red'), HEX codes ('#1f77b4"), or red, green,
blue (RGB) tuples ((0.1, 0.2, 0.5)).

o linewidth: Adjusts line thickness

e Grid lines and backgrounds: Grid lines make plots easier to read by
providing visual reference points.

e Adding grid lines: Use the grid() function to add grid lines to a plot.
(see Figure 9.17)
plt.plot(x, y)
plt.grid(True) # Enable grid lines
plt.show()

16 -
14 -
12 -

10 -

2) /
0-
0.0 Eljb lj{J ljf: Ej{] 2?5 3?'1} 3?5 4jG

Figure 9.17: Adding grid lines

e Customizing grid lines: You can control the style, color, and width of
grid lines: (see Figure 9.18)

plt.plot(x, y)

plt.grid(
which="major"', # Grid for major ticks
linestyle="--", # Dashed grid lines
linewidth=1, # Line thickness
color="red’ # Grid line color

)

plt.show()

(]
]

4.0

3.5

0.5 1.0 1.5 2.0 2.5 3.0

0.0

Figure 9.18: Customization of grid lines

professional

9

Apply the 'ggplot' style

)

1 I
1 I
s et e D B

]] | (] (] [}

1] I I I]

(]] I I I [}

L] I I I L}

] |]]]

(] (] i I (]]

1 1 I I I]

iy ke iy e T r i | T T, i (i

1] I] 1

1] i 1] 1

]] I]]]

]] I I]]

1] 1 [1

i I I]] [}

[[ypp— pa———— . " | L

] (] I I] (]

(] (] i I (] i

1] | I]

L] L] | I L}

(] (] I I (] (]

1 1 | I I 1

(]] I I (] i

s ———— d————— + ~ -+ e e e T

] I | I I

] I I I I

L] L] I I I L}

]] 1 I I 1

]] i I] 1

i (] I I] (]

1 1 I | I 1

bt [t (et T i | T

[}] i]] 1

i i i i i i

1] I I]]

L]] I I]]

i (] I I I []

]] I I I]

T RN | —— - [&4 =k=

1] I I I i

]] I I] 1

I (] I I I [}

(] (] i I (]]

] I I I I]

]] 1 I I 1

(] (] I I I i

) I = "

(] (] I I (] (]

i (] I I] L}

i] | | I 1

]] I I]]

i (] I I i (]

L]] I]]]

1 1 1 i | i

e ————— e - e T o o e

L} I I]] 1 I

1] 1 I] 1 1

1] I I (] (] I

1] | I I 1 1

]] | I] 1 I

1] i I] 1 1

e LT e b T PR

1] | I I 1 1 1

(] (] I I (] (] | I [}
] I [1 |]

]] ' ¥ 1 [[

o =F ™~ o « o = ™~ o=

i —~ i i

styles that can be applied to give your plots a consistent

look.
» Applying a style: Use the style.use() function to apply a predefined

from matplotlib import style
style.use('ggplot"

plt.plot(x, y)

plt.show()

e Applying predefined plot styles: Matplotlib offers several built-in
style. (see Figure 9.19)

L6 -
14
12 -

10 -

|

0.0 05 10 15 20 25 30 35 40
Figure 9.19: Applying a style

e Exporting customized plots: After customizing your plot, shown in
Figure 9.20, save it for use in reports or presentations using the
savefig() function:
plt.plot(x, y)
plt.title("Exported Plot")
plt.savefig("customized plot.png", dpi=600,
bbox_inches="'tight")

Exported Plot
16 -

14 -
12 -

10 -

2 | /
[}_
0.0 0.5 1.0 1.5 2.0 2.3 3.0 3.5 4.0

Figure 9.20: Exporting of plot

The explanation is as follows:
o dpi: Controls the resolution (higher values for better quality).
o bbox_inches="tight': Ensures no extra white space around the plot.

9.3.1 Specialized plots in Python

With packages like Matplotlib and Seaborn, Python has emerged as a potent
substitute for MATLAB, which is well-known for its strong charting
capabilities. These packages let Python users make specific plots like heat
maps, polar plots, and histograms that resemble MATLAB. We shall
examine in this guide how Python is a flexible tool for data analysis and
visualization by supporting these customized visualizations.

9.3.2 Introduction to specialized plots

Beyond simple line or bar charts, specialized plots provide tools for
visualizing complex data. Inspired by MATLAB, Python offers a wide range

of capabilities for making bespoke charts. Python easily mimics MATLAB's
flexibility while improving accessibility with modules like Matplotlib.

To get started, perform the following steps:
1. Install the necessary libraries:
pip install matplotlib numpy seaborn
2. Import the required modules:
import matplotlib.pyplot as plt

import numpy as np
import seaborn as sns

9.3.2.1 Histograms for visualizing distributions

Histograms are essential for understanding the frequency distribution of
data. They group data into bins, making it easier to identify patterns such as
skewness or modality.

e Creating a simple histogram: A simple histogram in Python can be
created using Matplotlib's plt.hist() function, which bins and
visualizes the distribution of numerical data: (see Figure 9.21)

Generate random data

data = np.random.normal(@, 1, 1000)

Create a histogram

plt.hist(data, bins=30, color='blue', alpha=0.7)
Add title and labels

plt.title("Histogram Example")
plt.xlabel("Value")

plt.ylabel("Frequency")

plt.show()

Frequency

Histogram Example
100 -

80 -

60 -

40 -

20

ﬂ" i] |-

Value

Figure 9.21: Simple Histogram

o Key parameters:

= bins: Determines the number of bins.

= color: Sets the bar color.

= alpha: Adjusts transparency for overlapping histograms.
Overlaying multiple histograms: Compare distributions by overlaying
multiple histograms: (see Figure 9.22)
datal = np.random.normal(@, 1, 1000)
data2 = np.random.normal(2, 1.5, 1000)
plt.hist(datal, bins=30, alpha=0.5, label='Data 1',
color="blue"')
plt.hist(data2, bins=30, alpha=0.5, label='Data 2',
color="orange"')
plt.title("Overlapping Histograms")

plt.xlabel("Value")
plt.ylabel("Frequency")
plt.legend()

plt.show()

Overlapping Histograms

B Data 1l
Data 2
a0 -
5. 60 -
o
=
o
=]
g
= oa0 -
20 -
0 = |] | i
-2 0 2 4 &

Value

Figure 9.22: Multiple histograms

e Histogram with a density curve: Use Seaborn to overlay a density
curve on the histogram: (see Figure 9.23)
sns.histplot(data, kde=True, bins=30, color='green')
plt.title("Histogram with Density Curve")
plt.xlabel("Value")
plt.ylabel("Frequency")
plt.show()

Histogram with Density Curve

100 -

80 -

Frequency
(=]
o

'
o
i

20 -

-3 -2 -1 0 1 2 3
Value

Figure 9.23: Histogram with density curve

9.3.2.2 Heatmaps for visualizing matrix relationships

Heatmaps use colors to represent data values in a matrix, making them ideal
for analyzing correlations, confusion matrices, and tabular data. Refer to the

following details:

e Basic heatmap: A basic heatmap in Python can be quickly created
using Seaborn's heatmap() function, which visualizes matrix-like data
through color gradients. (see Figure 9.24)

Generate a random 10x10 matrix

data = np.random.rand(10, 10)

Create a heatmap

sns.heatmap(data, annot=True, cmap='coolwarm',
linewidths=0.5)

plt.title("Basic Heatmap")
plt.show()

Basic Heatmap

= ﬁ 051 038 0.5 [0 035 n.45

-

m -0.45 1 .ﬂ 64 0.41 0.65 0.42 0.69

<+ -0.57 sl 0.67 BPA 0.69 0.44
: - :

064 038 -'ﬁ::e;;a;

| 08« |
w -0.44 0.52 ﬁml ; 17]0. 0.7

hofss 0.65 T T

- 0.6

0 1 2 3 4 5 6 7 8 9
Figure 9.24: Heatmap

o Key parameters:
» annot=True: Displays numeric values in cells.
= cmap: Specifies the color scheme (e.g., 'coolwarm', 'viridis').
= linewidths: Adds space between cells.
The applications are as follows:

e Correlation matrix: Correlation matrices quantify the relationships
between variables. Heatmaps provide a clear visual representation. A
correlation matrix is a table that measures the linear relationships
between multiple variables, typically using Pearson’s correlation
coefficient (ranging from -1 to 1). Heatmaps are an effective way to
visualize this matrix, where colors represent the strength and direction

of correlations; warmer colors (e.g., red) indicate positive relationships,
cooler colors (e.g., blue) suggest negative correlations, and near-zero
values appear neutral. Libraries like Seaborn simplify this with
sns.heatmap(), which can include annotations for exact values, while
Matplotlib provides customization options for labels and color
gradients. Plotly enhances interactivity, allowing users to hover over
cells for precise values. Correlation heatmaps are widely used in
exploratory data analysis (EDA), finance, and machine learning to
identify multicollinearity, feature importance, and underlying patterns in
datasets:

Load sample data

import pandas as pd

df = sns.load dataset('iris')

Compute correlation matrix

corr = df.corr()

Plot the heatmap

sns.heatmap(corr, annot=True, cmap='Y1lGnBu',
fmt=".2f")

plt.title("Correlation Matrix Heatmap")

plt.show()

Correlation Matrix Heatmap

- 0.0

=2

petal_width petal_length sepal_width sepal_length

- =0.4

sepal_length sepal_width petai_length petal_width

Figure 9.25: Correlation matrix heatmap

e Confusion matrix: Heatmaps are commonly used to visualize
confusion matrices, shown in, Figure 9.26, in classification problems:
from sklearn.metrics import confusion_matrix
Sample confusion matrix
y true = [0, 1, 1, 0, 1, O]
y_pred = [0, 1, 0, 0, 1, 1]
cm = confusion_matrix(y_true, y pred)
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues"')
plt.title("Confusion Matrix Heatmap")
plt.xlabel("Predicted Label")
plt.ylabel("True Label")
plt.show()

Confusion Matrix Heatmap

2.0

True Label

0 1
Predicted Label

Figure 9.26: Confusion matrix

Application: Spearman rank correlation, as shown in Figure 9.27:
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.stats import spearmanr # Corrected
import statement
Data
data = {

'Math': [78, 85, 92, 70, 88, 90, 65, 84, 76,
89],

'Science': [80, 87, 91, 72, 85, 88, 68, 82, 78,
%],

'English': [85, 82, 78, 88, 92, 86, 74, 80, 81,
8417,

'History': [75, 80, 85, 70, 83, 88, 66, 79, 72,

87]

}

Convert to DataFrame

df = pd.DataFrame(data)

Compute Spearman's rank correlation matrix
spearman_corr = df.corr(method="'spearman")

Display the rank correlation matrix
print("Spearman Rank Correlation Matrix:")

Spearman Rank Correlation Heatmap

Math

@
(.
=
a
A -0.6
£
v
= -0.4
L

History

Math Science English History

Figure 9.27: Spearman rank correlation heatmap

9.3.2.3 Polar plots using visualizing angular data

Polar plots are designed for data that is better represented in polar

coordinates (e.g., angles, directions). They are particularly useful in fields
like navigation, meteorology, and engineering. The following points provide
more information on them:

e Basic polar plot: A basic polar plot in Python can be created using
Matplotlib's subplot(polar=True), which plots data in circular
coordinates (angle 6 versus radius 7). (see Figure 9.28)
theta = np.linspace(®, 2 * np.pi, 1600)

r = np.abs(np.sin(2 * theta)) # Radius as a
function of angle

ax = plt.subplot(111l, polar=True)
ax.plot(theta, r, color='purple', linewidth=2)
plt.title("Basic Polar Plot")

plt.show()

Basic Polar Plot
90 =

135" 457
1.0

1807 i

hJ

v

1
]
=

2707

Figure 9.28: Basic Polar Plot

Key parameters:
e polar=True: Converts the subplot to polar coordinates.
e theta: Specifies angles (in radians).

e r: Represents radius values.

Let us compare MATLAB and Python for specialized plots through the
following table:

Feature MATLAB Python
Histograms histogram() plt.hist() or sns.histplot()
Heatmaps imagesc() sns.heatmap()

Polar plots polarplot() plt.subplot(polar=True)
Customization Extensive, built-in Highly customizable with libraries
Ease of use Intuitive but proprietary Open-source and widely supported

Table 9.2 : Comparison of specialized plots of MATLAB and Python

9.4 Comparison of examples via MATLAB and
Python

This section presents a comparative study of a few selected examples
implemented using MATLAB and Python. By analyzing these examples side
by side, we highlight the similarities and differences in syntax, functionality,
and computational efficiency between the two platforms. This comparison
provides valuable insights for users in choosing the appropriate tool based
on their programming preferences and application requirements.

Example 9.1: Plot the sine and cosine functions on the same graph, with
appropriate labels, a title, and a legend.

MATLAB code:

X = 0:0.1:2%pi;

yl = sin(x);

y2 = cos(x);

plot(x, y1, '-r', 'LineWidth', 2);

hold on;

plot(x, y2, '--b', 'LineWidth', 2);

title('Sine and Cosine Functions');

xlabel('x"');

ylabel('y");
legend('sin(x)"', 'cos(x)"');
grid on;

Sine and Cosine Functions

T P

—sin{x)

= = =cos{x) -

=0.2 -

-0.4

-0.6

-0.8

Figure 9.29 (a) : Sine and cosine functions plot in MATLAB

Python code:

import numpy as np

import matplotlib.pyplot as plt

X = np.linspace(@, 2 * np.pi, 100)

yl = np.sin(x)

y2 = np.cos(x)

plt.plot(x, y1, '-r', linewidth=2, label='sin(x)")
plt.plot(x, y2, '--b', linewidth=2, label='cos(x)')
plt.title('Sine and Cosine Functions"')
plt.xlabel('x")

plt.ylabel('y")

plt.legend()

plt.grid(True)

plt.show()

Sine and Cosine Functions

— GIN(X)
=] D0 - - cos(x)

0 1 2 3 4 5 6
Figure 9.29 (b) : Sine and cosine functions plot in Python

Example 9.2: Create a bar plot showing the population of five cities and a
scatter plot comparing two datasets.

MATLAB code:

cities = {'Cityl', 'City2', 'City3', 'City4', 'City5'};
population = [500000, 700000, 650000, 800000, 900000];
bar(population);

set(gca, 'xticklabel', cities);

title('Population of Cities');

xlabel('Cities');

ylabel('Population');

<10° Population of Cities
T

Ly

Population
B

City1 City2 City3 Cityd City5
Cities

Figure 9.30 (a) : Bar plot in MATLAB

Python code:

import matplotlib.pyplot as plt

cities = ['Cityl', 'City2', 'City3', 'City4', 'City5']
population = [500000, 700000, 650000, 800000, 900000]
plt.bar(cities, population, color='skyblue')
plt.title('Population of Cities')

plt.xlabel('Cities")

plt.ylabel('Population")

plt.show()

Population of Cities

800000 -
600000 -
£
2
=
o
£ 400000 -
200000 -
City3
Cities

Figure 9.30 (b) : Bar plot in Python

Example 9.3: Create a customized line plot with gridlines, line markers, and
annotations for specific points.
MATLAB code:
= 0:0.1:10;
y = X."2;
plot(x, y, '-o', 'LineWidth', 2, 'MarkerSize', 5);
title('y = x"2");
xlabel('x");
ylabel('y');
grid on;
text(5, 25, 'Point of Interest', 'FontSize', 12,
"Color', 'r');

100

Q-

80

70

60

40

30

20

10

M | ! |

1 2 3 4 N 6 7 g
X

Figure 9.31 (a) : Customized line plot in MATLAB

Python code:
import matplotlib.pyplot as plt
import numpy as np

X =
y:

plt.
plt.
plt.
plt.

np.linspace(@, 10, 100)

X ** 2

plot(x, y, '-o', linewidth=2, markersize=5)
title('y = x*2")

xlabel('x")

ylabel('y")

y = x"2
100 -

a0 -

60 -

40 -

Int of Interest

I]

10

o
MJ
e
o
0]

Figure 9.31 (b) : Customized line plot in Python

Example 9.4: Generate a 3D surface plotof z = g in(\[(xﬁ + y?)

MATLAB code:

[X, Y] = meshgrid(-5:0.5:5, -5:0.5:5);
Z = sin(sqrt(X.”2 + Y."2));

surf(X, Y, 2);

title('3D Surface Plot');

xlabel('X");

ylabel('Y");

zlabel('Z");

3D Surface Plot

Figure 9.32 (a) : 3D surface plot in MATLAB

Python code:

import numpy as np

import matplotlib.pyplot as plt

from mpl toolkits.mplot3d import Axes3D
X = np.linspace(-5, 5, 50)

y = np.linspace(-5, 5, 50)

X, Y = np.meshgrid(x, y)

Z = np.sin(np.sgrt(X**2 + Y**2))

fig = plt.figure()

ax = fig.add subplot(111l, projection='3d")
ax.plot surface(X, Y, Z, cmap='viridis"')
ax.set_title('3D Surface Plot')

ax.set xlabel('X")

ax.set_ylabel('Y")

ax.set _zlabel('Z")

plt.show()

3D Surface Plot

T0.75
= 0.50
~0.25
= 0.00
==0.25
T=0.50
~=0.75

Figure 9.32 (b) : 3D surface plot in Python

Example 9.5: Plot a quadratic equation y = ax’ + bx + ¢ for three different
sets of coefficients a, b, ¢ on the same graph with a legend.

MATLAB code:

X = -10:0.1:10;

yl = 2*x.72 + 3*x + 1;

y2 = -X."2 + 5*x - 2;

y3 = 0.5%x."2 - 4*x + 3;

plot(x, y1, 'r', 'LineWidth', 2);

hold on;

plot(x, y2, 'g', 'LineWidth', 2);

plot(x, y3, 'b', 'LineWidth', 2);

title('Quadratic Equations');

xlabel('x"');

ylabel('y");

legend('2x"2 + 3x + 1', '"-x"2 + 5x - 2", '@.5x"2 - 4x +

3');
grid on;

Quadratic Equations
250 T T T

— 2+ 31 7
200 - ol B2
\ ——0.5¢% - dx +3

150 o7

100 -

50

S0
-100 - 4

A0

200 : : : : : b
-10 -8 £ 4 2 0 2 E & 8 10
x

Figure 9.33 (a) : Quadratic equation plot in MATLAB

Python code:

import numpy as np

import matplotlib.pyplot as plt

X = np.linspace(-10, 10, 200)

yl = 2¥%x**2 + 3*x + 1

y2 = -xX**2 + 5*%x - 2

y3 = 0.5%x**2 - 4*x + 3

plt.plot(x, y1, 'r', label='2x"2 + 3x + 1', linewidth=2)
plt.plot(x, y2, 'g', label='-x"2 + 5x - 2', linewidth=2)
plt.plot(x, y3, 'b', label='0.5x"2 - 4x + 3',
linewidth=2)

plt.title('Quadratic Equations')

plt.xlabel('x")

plt.ylabel('y")

plt.legend()

plt.grid(True)

plt.show()

Quadratic Equations

250
200
150
100
50 -
=
0-
~50 -
-100 - — 22 43X 41
— X2 4 5x-2
~150 - — 05x72-4x 4+ 3
-10.0 -7.5 -5.0 -2.5 0.0 25 5.0 7.5 10.0

X

Figure 9.33 (b) : Quadratic equation plot in Python

Example 9.6: Create a pie chart to visualize the percentage distribution of
expenses in five categories (e.g., Rent, Food, Transport, Entertainment, and
Savings):

MATLAB code:

categories = {'Rent', 'Food', 'Transport',
"Entertainment', 'Savings'};

expenses = [40, 25, 15, 10, 10];

pie(expenses, categories);

title('Expense Distribution');

Expense Distribution

Savings

Entertainment

Rent

Transport

Food

Figure 9.34 (a) : Pie chart in MATLAB

Python code:

import matplotlib.pyplot as plt

categories = ['Rent', 'Food', 'Transport',
'"Entertainment’, 'Savings']

expenses = [40, 25, 15, 10, 10]

plt.pie(expenses, labels=categories, autopct='%1.1f%%",
startangle=140)

plt.title('Expense Distribution')

plt.show()

Expense Distribution

Entertainment

Transport

Rent Food

Figure 9.34 (b) : Pie chart in Python

Example 9.7: Generate a 3D parametric plot of a helix defined by x=cos(?),
y=sin(t), z=t for t € [0, 10x]:

MATLAB code:

t = 0:0.1:10%pi;
X = cos(t);

y = sin(t);

z = t;

plot3(x, y, z, 'LineWidth', 2);
title('3D Helix');

xlabel('X");

ylabel('Y');

zlabel('Z2");

grid on;

3D Helix

40 -
30 -

N 20 -

10

Figure 9.35 (a) : 3D parametric plot in MATLAB

Python code:

import numpy as np

import matplotlib.pyplot as plt

t = np.linspace(@, 10 * np.pi, 500)
= np.cos(t)

np.sin(t)

=t

fig = plt.figure()

ax = fig.add subplot(111l, projection='3d")
ax.plot(x, y, z, linewidth=2)
ax.set _title('3D Helix")

ax.set xlabel('X")

ax.set _ylabel('Y'")
ax.set_zlabel('Z")

plt.show()

N < X
I

3D Helix

2D
20
15
10
5
~ 0
1.0
-~ 05
-1.0 ; ~ 0.0
-0.5 : Y
0.0 , =~ =05
0.5
X 1o —10

Figure 9.35 (b): 3D parametric plot in Python

Example 9.8: Correlation matrix heatmap: Generate a heatmap to visualize
the Pearson correlation matrix for a dataset with multiple variables:

MATLAB code:

% Generate sample data

data = rand(100, 5); % 100 observations, 5 variables
% Compute Pearson correlation matrix
corrMatrix = corr(data);

% Visualize as a heatmap using imagesc
imagesc(corrMatrix);

colormap(parula); % Set colormap

colorbar; % Add color bar to indicate scale
% Add title and labels

title('Pearson Correlation Matrix');
xlabel('Variables');

ylabel('Variables');

Pearson Correlation Matrix

Variables
L b2
(1] w [4.]

'

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
Variables

Figure 9.36 (a): Correlation Matrix Heatmap in MATLAB

Python code:

import numpy as np

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

Generate sample data

np.random.seed(42)

data = pd.DataFrame(np.random.rand(100, 5), columns=
[‘Varl’, €‘Var2’, ‘Var3’, ‘Var4’, ‘Var5’])

Compute Pearson correlation matrix

corr_matrix = data.corr(method="'pearson')

Visualize as a heatmap

plt.figure(figsize=(8, 6))

sns.heatmap(corr_matrix, annot=True, cmap='coolwarm',
fmt=".2f")

plt.title('Pearson Correlation Matrix Heatmap')
plt.show()

Pearson Correlation Matrix Heatmap

Varl

L
g - 0.6
n -0.4
s

- 0.2

Vard

vars

L] L]

varl Var2 var3 Vard vars

Figure 9.36 (b): Correlation matrix heatmap in Python

Example 9.9: Rank correlation matrix heatmap: Generate a heatmap to
visualize the Spearman rank correlation matrix for the same dataset:

MATLAB code:
% Compute Spearman rank correlation matrix
rankCorrMatrix = corr(data, 'Type', 'Spearman');
% Visualize using imagesc
imagesc(rankCorrMatrix);

colormap(jet); % Set colormap to ‘jet’

colorbar; % Add color bar

% Add title and labels

title('Spearman Rank Correlation Matrix');
xlabel('Variables');

ylabel('Variables');

Spearman Rank Correlation Matrix

0.5

Variables
i .
e w [%) o

-l
tn

'

=
e

Ll
atn
23
-

1.5 2 25 3 35 4 4.5 5 5.5
Variables

Figure 9.37 (a): Rank correlation matrix heatmap in MATLAB

Python code:

Compute Spearman rank correlation matrix
rank_corr_matrix = data.corr(method='spearman')

Visualize as a heatmap

plt.figure(figsize=(8, 6))
sns.heatmap(rank_corr_matrix, annot=True,
cmap='viridis', fmt='.2f")

plt.title('Spearman Rank Correlation Matrix Heatmap')
plt.show()

0.8

0.6

10.4

40.2

0.2

Spearman Rank Correlation Matrix Heatmap L

0.06

Varl

- 0.8

Varz

Var3

Var4

Vars

Varl Varz2 Var3 Vard Vars

Figure 9.37 (b): Rank correlation matrix heatmap in Python

Example 9.10: Generate and visualize a histogram of random numbers
sampled from a normal distribution (4 = 0, ¢ = I):

MATLAB code:

data = randn(1000, 1); % Normal distribution
histogram(data, 30, 'FaceColor', 'b');

title('Histogram of Normal Distribution');
xlabel('Value');

ylabel('Frequency');

grid on;

Histogram of Normal Distribution
T T]

Frequency

Value
Figure 9.38 (a): Histogram in MATLAB

Python code:

import numpy as np

import matplotlib.pyplot as plt

data = np.random.randn(1000) # Normal distribution
plt.hist(data, bins=30, color='b', alpha=0.7)
plt.title('Histogram of Normal Distribution')
plt.xlabel('Value")

plt.ylabel('Frequency’)

plt.grid()

plt.show()

Histogram of Normal Distribution

B0 -

- 60 -
=
3
=3
a
E 40 -
20 -
I:' — i L i]]]
-3 —2 —1 0 1 2 3
Value
Figure 9.38 (b): Histogram in Python
Conclusion

In this chapter, we explored the fundamentals of data visualization using
Python, beginning with an overview of essential libraries such as Matplotlib.
We demonstrated how to create basic plots, customize visual elements like
labels, legends, and colors, and present data in a visually effective and
meaningful way. Through practical examples, we emphasized how
visualizations can enhance data interpretation and support informed
decision-making. The chapter concluded with a comparative study of
MATLAB and Python, showcasing advanced-level examples to highlight the
unique features, strengths, and flexibility of each platform in handling
scientific and engineering visualizations. This comparative approach enables
readers to appreciate the differences in syntax, plotting capabilities, and
customization options between the two environments. By mastering these
tools, users gain the confidence to select and apply the appropriate platform
for diverse visualization tasks in academic, research, or industry-based
projects.

In the next chapter, we will shift focus to signal processing and image
processing using MATLAB and Python, providing foundational concepts
and implementation techniques along with a comparative analysis using real-
world examples to deepen understanding and application.

Exercises

1.

Create a vector of 100 evenly spaced points between -5 and 5. Compute
the y values for the curve y = x?and plot graph of y = x°.

.Make a plot of the function sin(x) + x’ - x using the appropriate

command with x from 0 to 2z with 90 points between. Add the
appropriate title and labels for the x and y axis, using the command and
the toolbar of the figure window. Now save the figure as an editable file
and the . jpeg file.

. Write a program to generate a mesh and surface plots for

2

7= _ —3<x<3and-+S¥V<4

x2+y2’

. Use a plot command to get an idea about the following well-known

mathematical functions and verify that this is the curve you expected:
a. sin(x) in range [-360,360]

b. cos?(x) in range [-180,180]

c. x* for x in [-10,10] with 60 points

d. log(x) for x in [-100,100]

e. exp(x) for x in [-10,10] with 40 points.

. Write a program that generates and plots a cosine wave. The plot should

clearly label the axes, include a title, and use a range of x-values from 0
to 2.

. Write the single command to draw the two graphs of sin(x) and cos(x)

together. The graph of sin(x) must be of green color with a dashed line
and graph of cos(x) must be of ‘+’ marker and cyan color. Insert a
proper legend also using the toolbar and command.

. Create a script file and use the plot command to plot the function:

10.

11.

12.

13.

14.

15.

16.

17.

y = (3.5)7%* cos(6x),—2 < x < 4.

. Plot the given function 8 # + 5 cos(?) in domain [-3, 3].
. Plot the function 3x°- 26x + 10 and its first and second derivatives for x

in [-2,4], all in the same figure using the plot function with the
commands xlabel, ylabel and title for labels of axis and title on the axis.

Create a logarithmic spiral for x = € cos (0) and y = € sin (0) with k =
0.05 and 0 =-10x to 10z with 2000 evenly spaced points. Use text (a, b,
‘message’) and gtext() command to insert a text in a graph.

Plot the given number of students [2, 10, 5, 1, 20, 4] with grades A, B,
C, D, E, F and label them as a pie diagram. Do by defining vectors x for
values and y for grades and do directly with the command without
defining vectors. Also, pull the biggest and the smallest slices.

Let x be a vector with 10 elements from 0.1 to 20, y = 2%, Perform the
following:

a. Draw a bar graph in vertical and horizontal direction.
b. Draw a graph like a staircase.

c. Draw a graph with y as stems from x axis.

Create a surface plot for the given function

7 =1.6-25Vx7+y? sin(x) cos(0.8y),-3<x<3,-3<y<3_ ..
red edges.

Create a 3D graph for the given function
7 = % +2cos (3y),-3<x<3,-3<y<3using the appropriate
commands, and label it appropriately.

Write code to draw a lemniscate in green color with asterisk markers for
X = cos(f)+/2cos (20) and y = sin (8),/2cos (20) for O =

T T . :
~ 3 to I with 500 evenly spaced points.

Create a logarithmic spiral for x = € cos (0) and y = €*° sin (6) with
k=0.05 and O = -10x to 10z with 2000 evenly spaced points. Use text (a,
b, 'message’) and gtext() command to insert a text in a graph.

An object is fired at an angle O with respect to the horizontal axis. The

18.

19.

20. Consider the function f(x) =

initial velocity of the object is 10 ms™'. Trace the path of the object for
different values of 0 = 20°,45°,65°Hint: Use the following
equations of the motion for the projectile trajectory:

a. Horizontal position (x): x = v, cos(0) ¢
b. Vertical position (y): y = v,sin(6) t- (%) gt

Here:
a. v, 1s the initial velocity.

b. 0 is the launch angle.

c. t 1s time to be taken from 0 to 100 sec.

d. g is the acceleration due to gravity (approximately 9.81 m/s?).

x2—4.
x+5

As two subplots arranged vertically, here x has entries from 0 to 100
with total 30 points. Also insert labels, provide similar title to the
graph.

Write a script file to draw the graph of e*+x’-cos?(3x) and

As a single graph providing legends, create a single plot that visualizes
both a given function and its derivative for y = x’¢* with0 = x <9,
The function should be plotted with a solid line, while the derivative
should be represented by a dashed line. Include a legend that distinctly
identifies which line corresponds to the function and which to its
derivative. Also, label both the x-axis and y-axis appropriately for
proper interpretation of the graph.

(x%+3x-1)
(x%-1)
of the vertical asymptotes of this function. Divide the domain of into
three distinct intervals based on the positions of these asymptotes.
Subsequently, plot the function f (x) within each of these intervals. Set
the y-axis range of the plot to -15 to 15 and ensure proper labeling of the

axes.

. Determine the locations

CHAPTER 10

Working with Data in MATLAB
and Python

Introduction

This chapter provides an inclusive approach to working with data in Matrix
Laboratory (MATLAB) and Python. These are the two most popular
programming languages for data analysis and scientific computing. This
chapter is divided into three sections: MATLAB-based and Python-based
concepts and a comparative study of MATLAB and Python codes. Every
section contains detailed explanations and examples to understand the basics
of the two languages.

In today’s data-driven world, the ability to efficiently manipulate, analyze,
and preprocess data 1s a fundamental skill across various domains, including
engineering, finance, healthcare, and machine learning. This chapter
introduces essential techniques for working with data in MATLAB and
Python, two of the most widely used platforms for numerical computing and
data analysis. MATLAB excels in matrix-based operations and provides
powerful tools for statistical analysis and structured data handling through
tables. Meanwhile, Python, with its rich ecosystem of libraries like Pandas
and NumPy, offers flexible and scalable solutions for data manipulation,
statistical computing, and preprocessing.

You will learn how to perform key operations such as indexing, reshaping,

and aggregating datasets—skills that are crucial for tasks ranging from
cleaning experimental data to preparing datasets for machine learning
models. The chapter also covers statistical functions for computing measures
like mean, variance, and correlation, enabling users to derive meaningful
insights from raw data. Practical applications include processing sensor data
in engineering, analyzing financial trends, and handling biomedical datasets.
By the end of this chapter, you will be equipped with the foundational
knowledge to tackle real-world data challenges, bridging the gap between
theoretical concepts and hands-on implementation in MATLAB and Python.

Structure

In this chapter, we will learn the following topics:
e 10.1. MATLAB-based concepts
e 10.2. Python-based concepts
e 10.3. Comparative study via MATLAB and Python codes

Objectives

The objectives of this chapter are to equip readers with essential skills for
handling, analyzing, and preprocessing data in MATLAB and Python, with a
focus on real-world applications. By exploring data manipulation techniques,
readers will learn how to efficiently index, slice, and reshape datasets; these
skills are crucial for tasks like cleaning sensor data in engineering or
processing financial records. The chapter also covers statistical functions,
enabling users to compute measures like mean, standard deviation, and
correlation, which are fundamental in fields such as biomedical research
(e.g., analyzing clinical trial data) or market trend analysis.

In MATLAB, readers will gain proficiency in working with tables, a
structured way to manage labeled datasets, which is particularly useful in
organizing experimental results or survey data. Meanwhile, in Python, they
will master Pandas and NumPy for advanced data manipulation, such as
merging datasets or handling missing values, common tasks in business
analytics and machine learning. The chapter emphasizes data preprocessing

and teaching techniques like normalization and outlier detection, which are
critical for preparing data for Al models or predictive analytics.

10.1 MATLAB-based concepts

MATLAB is a high-level programming language used to understand the
basics of numerical computation, data analysis, and visualization. It is
mainly useful regarding matrix operations. It i1s a powerful tool to
manipulate data, for statistical analysis, and to work with structured data
(table). In this section, we will explore MATLAB's capabilities in detail,
with examples.

10.1.1 Data manipulation in MATLAB

Data manipulation is one of MATLAB's vital assets. It provides a range of
functions and operators to work with matrices and other aspects. We will
cover key data manipulation techniques in MATLAB ahead. Let us look at
the following details:

e Creating arrays and matrices: MATLAB is considered to work mainly
with matrices and arrays mainly. You may form arrays and matrices via
square brackets [].

Example 10.1: How to create row vector, column vector, and 3x3
matrix in MATLAB:

% Create a row vector Output:
row_vector = [1, 2, 3, 4, 5] row_vector =
% Create a column vector 1 2 3 4 5
column_vector =
column_vector = [1; 2; 3; 4; 5] 1
% Create a 3x3 matrix 2
matrix = [1, 2, 3; 4, 5, 6; 7, 8, 9] 3
4
5
matrix =
1 2 3
4 5 6
7 8 9

Table 10.1: Creation of vectors in MATLAB
e Indexing and slicing: MATLAB has 1-based indexing, which means

the first element of an array is accessed with index 1. You may use
indexing to extract specific elements or slices of an array or matrix.

Example 10.2: Indexing and slicing in MATLAB:

% Access the 3rd element of a row vector Output:

element = row_vector(3) element =

% Access the element in the 2nd row, 3rd column of a 3

matrix matrix_element =
matrix_element = matrix(2, 3) 6

% Slice the first two rows and all columns of a sliced_matrix =
matrix 1 2 3
sliced_matrix = matrix(1:2, :) 4 5 6
% Slice the last three elements of a row vector sliced_vector =
sliced_vector = row_vector(end-2:end) 3 4 5

Table 10.2: Accessing and slicing the elements in MATLAB
MATLAB allows for easy data extraction and modification using indexing.
Example 10.3: Data extraction and modification in MATLAB:

A=1[123;456; 78 9] Output:
B = A(2, :) % Extracts second row A =
C = A(:, 3) % Extracts third column 1 2 3
D = A(1:2, 2:3) % Extracts a submatrix 4 5 6
E = A(end, :) % Extracts the last row 2 e =
F = A(2, 2) % Extracts a single element B =
G = A(:, [1 3]); % Extract specific columns C = 4 > 6
3
6
9
D =
2 3
5 6
E =
7 8 9
F =
5

Table 10.3: Extraction and modification of data in MATLAB

e Reshaping arrays: The reshape function allows you to change the
dimensions of an array without altering its data.

Example 10.4: Reshaping arrays in MATLAB:

matrix = [1 2 3; 2 3 4; 2 3 5];

% Reshape a 3x3 matrix into a 1x9 row
vector

reshaped_vector = reshape(matrix, 1, 9)
row_vector = [1, 2, 3, 4, 5, 0];
% Reshape a row vector into a 2x3 matrix

reshaped_matrix = reshape(row_vector, 2,

Output:
reshaped_vector

1 2 2
3 4 5

reshaped_matrix
1 3
2 4

3)
Table 10.4: Reshaping arrays in MATLAB
Example 10.5: Reshaping arrays in MATLAB:
A=1[123456]; Output:
B = reshape(A, [2,3]); % Reshape to 2x3 |A =
matrix 1 2
C = A'; % Transpose of matrix 6
D = permute(reshape(1:24, [4,3,2]), B =
[2,1,3]); 3 5
% Rearrange dimensions 4 6
E = flip(A); % Reverse the order of C=
elements 1
2
3
4
5
6
D(:,:,1) =
1 2 3 4
5 6 7 8
9 10 11 12
D(:,:,2) =
13 14 15 16
17 18 19 20
21 22 23 24
E =
6 5 4
1

Table 10.5: Some array operations in MATLAB

e Concatenation: You may concatenate arrays and matrices (horizontally
or vertically) via square brackets or the cat function.

Example 10.6: Concatenation in MATLAB:

% Horizontal concatenation Output:
A =[1, 2; 3, 4]; C =
B = [5J 6; 7, 8]) 1 2 > 6
C = [A, B] o 3 4 7 8
% Vertical concatenation 1 2
D = [A; B] 3 4
% Concatenation using the cat function 5 6
E = cat(1, A, B) % Vertical 7 8
concatenation E =
F = cat(2, A, B) % Horizontal L 2
concatenation 3 “
5 6
7 8
F =
2 5 6
3 4 7 8

Table 10.6: Concatenation of vectors in MATLAB
e Sorting: MATLAB offers a sort function to sort arrays and matrices.
Example 10.7: Sorting in MATLAB:

row_vector = [2 12 11 34 1 3 11 45]; Output:
% Sort a row vector in ascending order sorted_vector =
sorted _vector = sort(row_vector) 1 2 3 11 11

12 34 45
matrix = [14 12 30; 40 5 61; 17 80 91]; sorted_matrix =

14 5 30
% Sort a matrix along columns 17 12 61
sorted_matrix = sort(matrix, 1) % Sorts 40 80 91

each column

Table 10.7: Sorting in MATLAB
Sorting and filtering support the analysis of data effectively.
Example 10.8: Sorting and filtering in MATLAB:

A
B = sort(A) % Sort in ascending order

B
C = sort(A, 'descend') % Sort in 1 1 2 3 4 >
descending order >

[3, 1, 4, 1, 5, 9, 2, 6, 5]; Output:

D = A(A > 4) % Filter values greater C =
than 4 9 6 5 5 4 3
E = unique(A) % Find unique values 2 1 1
F = find(A > 3 & A < 7) % Find indices |P =
of elements in range E & 6 3
1 2 3 4 5 6
9
F =
3 5 8 9

Table 10.8: Sorting and filtering in MATLAB
e Merging and splitting data: In MATLAB, merging combines datasets
(e.g., using horzcat, or vertcat), while splitting divides them (e.g.,
via indexing, splitvars, or mat2cell), cnabling flexible data
manipulation for analysis.

Example 10.9: Merging and splitting data in MATLAB:

A=1[12; 3 4]; Output:
B=1[56;, 7 8], C =
C = [A, B] % Horizontal concatenation 2 5 6
D = [A; B] % Vertical concatenation 3 4 7 8
D =
1 2
3 4
5 6
7 8

Table 10.9: Merging and splitting data in MATLAB
e Handling missing data: In MATLAB, missing data is handled using
functions like rmmissing, fillmissing, and ismissing to clean,
interpolate, or flag gaps in datasets while preserving data integrity.

Example 10.10: Handling missing data in MATLAB:

A = [1 NaN 3; 4 5 NaN; 7 8 9] Output:

B = isnan(A) A =

% Identify missing values 1 NaN 3

C = mean(A, 'omitnan') 4 5 NaN

% Compute mean ignoring NaN values 8 2 e =
(] 1 0

4.0000 6.5000 6.0000

Table 10.10: Handling missing data in MATLAB

10.1.2 Statistical functions in MATLAB

MATLAB offers a complete set of built-in functions regarding statistical
analysis. These functions are improved for performance and are easy to
implement:

e Mean and standard deviation: The mean and std functions compute
mean and standard deviation of a dataset. In MATLAB, the mean
(average) is computed using mean(), while the standard deviation
(dispersion) is calculated with std(). These functions work on arrays,
matrices, or table columns, with options to specify dimensions (dim) or
handle missing data (‘omitnan').

Example 10.11: Mean and standard deviation in MATLAB:

% Calculate the mean of a vector Output:

data = [1J 2: 3) 4: 5]; mean_value =
mean_value = mean(data) 3

% Calculate the standard deviation of

a vector Std_value =
std value = std(data) 1.5811

Table 10.11: Mean and standard deviation in MATLAB

e Variance and covariance: The var and cov functions compute
variance and covariance of a dataset.

Example 10.12: Variance and covariance in MATLAB:

% Calculate the variance of a vector Output:

data = [1, 2, 3, 4, 5]; variance_value =
variance value = var(data) 2.5000

% Calculate the covariance between two covariance_matrix =
vectors 1 1

x = [1, 2, 3];

y = [4, 5, 6];

covariance_matrix = cov(x, y)

% Returns a 2x2 covariance matrix

1 1

Table 10.12 : Variance and covariance in MATLAB

e Correlation coefficient: The coefficient of correlation between two
datasets is calculated using the corrcoef function.

Example 10.13: Correlation coefficient in MATLAB:

% Calculate correlation coefficient Output:
between two vectors
x = [1, 2, 3];
y = [4, 5, 6];
correlation_matrix = corrcoef(x, y) 1 1
% Returns a 2x2 correlation matrix

correlation_matrix =
1 1

Table 10.13: Correlation coefficient calculation in MATLAB

e Histograms: A histogram, as seen in Figure 10.1, of a dataset is
produced via the histogram function.

Example 10.14: Histogram creation in MATLAB:

% Create a histogram of a vector

data = randn(1000, 1); % Generate random data
histogram(data, 'BinWidth', ©.5);
xlabel('Value');

ylabel('Frequency');

title('Histogram of Random Data');

200 I I Histogram of Randem Data "

180 |~

160 —

140 =

120

100 |-

Frequency

-4 -3 -2 - 0 1 2 3 4
Value

Figure 10.1: Histogram creation in MATLAB

10.1.3 Tables in MATLAB

A robust tool for storing and working with structured data is tables in
MATLAB. Tables are suitable for datasets with data because they enable the
use of labeled rows and columns:

* Creating tables: Table function may be utilized to construct a table.
Example 10.15: Creating a table in MATLAB:

% Create a table with named variables Output:
data = table([1; 2; 3], [4; 5; 6], data =
'VariableNames', {'varl', 'Var2'}) Varl Vvar2
1 4
2 5
3 6

Table 10.14: Creating tables in MATLAB

e Accessing table data: Dot notation and indexing are two types to fetch
particular columns or rows in a table.
Example 10.16: Accessing table data in MATLAB:

data = table([1; 2; 3], [4; 5; 6], Output:
'VariableNames', {'varl', 'Var2'}) data =

Varl Var2
% Access a specific column

varl data = data.Varl 5 ~
- 2 5
3 6
% Access a specific row varl_data =
row_data = data(2, :) 1
% Returns the second row g
row_data =

Varl Var2

2 5

Table 10.15: Accessing table data in MATLAB
e Adding and removing rows: A table may have rows added or removed.
Example 10.17: Adding and removing rows in MATLAB:

data = table([1; 2; 3], [4; 5; 6], Output:
'VariableNames', {'Vvarl', 'Var2'}) data =

Varl Var2
% Add a new row

new_row = {4, 7}; 1 4

data = [data; new _row]

N
(]

data =

% Remove the first row Vari var2

data(1, :) = []

A WNR
N O v b

data =
Varl Var2

2 5
3 6
4 7

Table 10.16: Adding and removing rows in MATLAB
e Sorting tables: A table may be sorted as per one or more columns.
Example 10.18: Sorting table in MATLAB:
data = table([21; 12; 13], [40; 5; 16], Output:

'VariableNames', {'Varl', 'Var2'}) data =
Varil Var2

% Sort a table by the 'Varl' column 1 20
sorted_table = sortrows(data, 'Varl') 12 5
13 16

sorted_table =
Varl Var2

12 5
13 16
21 40

Table 10.17: Sorting tables in MATLAB
e Filtering tables: Rows in a table may be filtered as per the condition
provided.
Example 10.19: Filtering table in MATLAB:

data = table([1; ©@; 13], [40; 5; 16], Output:
'VariableNames', {'Varl', 'Var2'}) data =
Varl Var2

% Filter rows where 'Varl' is greater

than 2 ; 4?
filtered_table = data(data.Varl > 2, :) 13 16

filtered_table =
Varl Var2

13 16

Table 10.18: Filtering tables in MATLAB

The statistical analysis and MATLAB data manipulation were discussed in
this section. MATLAB is a useful tool for numerical calculation due to its
built-in functions and matrix-based operations. Common activities, such as
indexing, sorting, and filtering data, are authenticated by examples provided.
Moreover, such examples explain how to compute statistical computations
such as correlation coefficients, mean, and standard deviation.

In the following section, Python-based topics will be thoroughly discussed,
with a focus on statistical analysis via Python tools and data manipulation
using Pandas and NumPly.

10.2 Python-based concepts

Python i1s a useful language for programmers. Data analysis, machine
learning, and scientific computing all widely use this language. Its strong
library system, which consists of Pandas and NumPy, makes it a useful tool
for statistical analysis and data analysis. In this section, we will methodically
explore the features of Python with examples.

10.2.1 Data manipulation with Pandas and NumPy

Pandas and NumPy are two of the most popular Python packages for data
manipulation. NumPy focuses on array-based numerical operations. High-
level data structures like DataFrames and Series are suggested by Pandas.
Let us look at them in detail:

e Creating DataFrames and arrays: In Python, we can create
DataFrames using libraries like pandas (pd.DataFrame()), while
arrays can be created using NumPy (np.array()). These are
fundamental structures for data manipulation and analysis.

o Creating a DataFrame with Pandas: A labeled data structure
containing columns of possibly many types is called a DataFrame. It
1s comparable to a MATLAB table.

Example 10.20: Creating a DataFrame with Pandas in Python:

import pandas as pd Output:

Create a DataFrame Varl Var2
data = {'var1': [1, 2, 3], 'Var2': [4, 5, 6]} o 1 4
df = pd.DataFrame(data) 1 2 5
print(df) 2 3 6

Table 10.19: Creating a DataFrame with Pandas in Python

o Creating an array with NumPy: NumPy arrays are similar to
MATLAB matrices and are optimized for numerical computations.

Example 10.21: Creating an array with NumPy in Python:

import numpy as np Output:

Create a 3x3 matrix [[1 2 3]
matrix = np.array([[1, 2, 3], [4, 5, 6], [7, 8, [4 5 6]
91D [7 8 9]]
print(matrix)

Table 10.20: Creating an array with NumPy in Python

e Indexing and slicing: Indexing and slicing in Pandas allow us to access
specific rows, columns, or subsets of data using methods like loc[]
(label-based) and iloc[] (position-based). Boolean indexing further

enables
manipulation.

filtering data based on conditions

for efficient data

o Indexing in Pandas: Pandas uses 0-based indexing. You may access
specific rows, columns, or elements using .1iloc (integer-based) or

.loc (label-based).

Example 10.22: Indexing and slicing in Python:

Access the element in the 2nd row, 1st
column

element = df.iloc[1, @]

print(element)

Access the 'Varl' column

varl _data = df['Varl']

print(varl_data)

Access rows where 'Varl' is greater than 1
filtered_rows = df[df['Varl'] > 1]
print(filtered rows)

Output:
2

0 1
1 2
2 3

Name: Varl, dtype: inte64
Varl Var2

1 2 5

2 3 6

Table 10.21 : Indexing in Pandas

Note: When transitioning between MATLAB and Python for data
analysis, it is important to note the key differences in indexing and data
inspection practices. MATLAB uses a 1-based indexing system,
meaning arrays and matrices start from index 1, whereas Python,
including libraries like NumPy and pandas, follows a 0-based indexing
system. This distinction can affect how data is accessed and
manipulated. Additionally, for quick data overview and statistical
summaries, Python offers user-friendly functions such as df.head()

and df.describe() in the pandas library.

o Slicing in NumPy: NumPy arrays may be sliced like MATLAB

matrices.
Example 10.23: Slicing in NumPy:

matrix = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

Slice the first two rows and all columns
sliced matrix = matrix[0:2, :]

Output:
[[1 2 3]

[4 5 6]]

print(sliced_matrix)

Slice the last two columns
sliced_columns = matrix[:, 1:3]
print(sliced_columns)

[[2 3]
[5 6]

[8 91]

Table 10.22: Slicing in NumPy
o Reshaping arrays: NumPy provides the reshape function to change

the dimensions of an array.
Example 10.24: Reshaping arrays in Python:

matrix = np.array([[1, 2, 3], [4, 5, 6], [7, 8,
911

Reshape a 3x3 matrix into a 1x9 vector
reshaped_vector = matrix.reshape(1, 9)
print(reshaped_vector)

Reshape a row vector into a 2x3 matrix
reshaped_matrix = np.array([1, 2, 3, 4, 5,
6]).reshape(2, 3)

print(reshaped_matrix)

Output:
[[123456 7 8 9]]

[[12 3]
[4 5 6]]

Table 10.23: Reshaping arrays in Python

e Concatenation: You may concatenate arrays and DataFrames using

NumPy and Pandas functions.

o Concatenation in NumPy: Concatenation in NumPy (using
np.concatenate(), np.vstack(), or np.hstack()) allows us
to combine arrays along specified axes. It is useful for merging
datasets or expanding arrays while maintaining numerical efficiency.

Example 10.25: Concatenation in NumPy:

Horizontal concatenation Output:

A = np.array([[1, 2], [3, 4]]) [[1 25 6]
B = np.array([[5, 6], [7, 8]]) [3 47 8]]
C = np.hstack((A, B)) [[1 2]
print(C) [3 4]

Vertical concatenation [5 6]

D = np.vstack((A, B)) [7 81]
print(D)

Table 10.24: Concatenation in NumPy
o Concatenation in Pandas: Concatenation in Pandas (using

pd.concat()) allows us to combine DataFrames or Series along
rows (axis = 0) or columns (axis = 1). It preserves indices and can
handle different shapes, making it ideal for merging datasets with

similar structures.
Example 10.26: Concatenation in Pandas:

Concatenate two DataFrames vertically Output:

dfl = pd.DataFrame({'Varl': [1, 2], 'Var2': [3, 4]}) Varl Var2
df2 = pd.DataFrame({‘varl’: [5, 6], ‘var2’: [7, 8]}) |o 1 3
df concat = pd.concat([dfl, df2], axis=0) # axis=0 |1 2 4
Fo? vertical 0 5 .
print(df_concat) 1 - -

Table 10.25: Concatenation in Pandas

e Logical indexing: Logical indexing helps in
specified conditions.

o Logical indexing in Pandas: Logical indexing in Pandas is useful to
filter data using Boolean conditions, such as df[df['column'] >
5] or df.query('column == "value
flexible way to select subsets of data based on complex conditions.

Example 10.27: Logical indexing in Pandas:

filtering data based on

Filter rows where 'Varl' is greater than 2 Output:
filtered_df = df[df['Varl'] > 2] Varl Var2
print(filtered df) 2 3 6

). This provides a

Table 10.26: Logical indexing in Pandas

o Logical indexing in NumPy: Logical indexing in NumPy is useful to
filter arrays using Boolean conditions, like arr[arr > 5] or
combining masks with & (and), | (or). This returns elements that meet
the specified criteria, enabling efficient conditional selection.

Example 10.28: Logical indexing in NumPy:

Find elements greater than 3 in a matrix
condition = matrix > 3

filtered_elements = matrix[condition]
print(filtered_elements)

Output:
[4567 8 9]

Table 10.27: Logical indexing in NumPy
e Sorting: Pandas and NumPy provide functions for sorting data.

o Sorting in Pandas: Sorting in Pandas is done using
df.sort_values() for column-based sorting or
df.sort_index() for index-based ordering. We can sort in
ascending/descending order and even handle missing data placement.

Example 10.29: Sorting in Pandas:

Sort a DataFrame by the 'Varl' column Output:
sorted_df=df.sort_values(by='Varl®, Varl Var2
ascending=False) 2 3 6
print(sorted_df) 1 2 5
o 1 4

Table 10.28: Sorting in Pandas
o Sorting in NumPy: Sorting in NumPy is performed using
np.sort() for returning a sorted copy of an array, or
ndarray.sort() for in-place sorting. We <can also use
np.argsort() to get the indices that would sort the array, enabling
indirect sorting of related data.

Example 10.30: Sorting in NumPy:

matrix = np.array([[11, 21, 3], [14, 15, 6], [70, 18, |Output:

9111) [[11 15 3]
Sort a matrix along columns [14 18 6]
sorted_matrix = np.sort(matrix, axis=e) [70 21 91]]
Sorts each column

print(sorted_matrix)

Table 10.29: Sorting in NumPy

10.2.2 Statistical analysis in Python
NumPy and Pandas libraries in Python provide a wide range of functions
regarding statistical analysis. Let us look at them in detail:
e Mean and standard deviation: In NumPy, the mean is calculated using
np.mean() and the standard deviation with np.std(), which operate
on arrays and support axis-based computations. Missing values (NaN)

can be handled with np.nanmean() and np.nanstd() to ignore them

automatically.

o0 Mean and standard deviation in NumPy: NumPy provides efficient
functions like np.mean() and np.std() to calculate the mean and
standard deviation of arrays. These operations can be performed along
specific axes for multi-dimensional data, making statistical analysis
simple and fast.

Example 10.31: Mean and standard deviation in NumPy:

Calculate the mean of a vector Output:
data = np.array([1, 2, 3, 4, 5]) 3.0
mean_value = np.mean(data) 1.4142135623730951

print(mean_value)

Calculate the standard deviation of a
vector

std_value = np.std(data)
print(std_value)

Table 10.30: Mean and standard deviation in NumPy
0 Mean and standard deviation in Pandas: In Pandas, we can
compute the mean and standard deviation using df.mean() and
df.std(), which automatically exclude missing values (NaN) by
default. These methods work across rows or columns (using axis
parameter) for quick statistical analysis.

Example 10.32: Mean and standard deviation in Pandas:

Calculate the mean and standard deviation of a Output:
DataFrame column 2.0

mean_value = df['Varl'].mean() 1.0
print(mean_value)

std value = df['Varl'].std()
print(std_value)

Table 10.31: Mean and standard deviation in Pandas

e Variance and covariance: NumPy provides np.var() for variance
and np.cov() for covariance calculations, essential for analyzing data
dispersion and relationships. These functions support axis-based
computations and weighting options for statistical modeling.

o Variance and covariance in NumPy:

Example 10.33: Variance and covariance in NumPy:

Calculate the variance of a vector

variance value = np.var(data)
print(variance_value)

Calculate the covariance between two vectors
X = np.array([1, 2, 3])

y = np.array([4, 5, 6])

covariance_matrix = np.cov(x, y)

Returns a 2x2 covariance matrix
print(covariance_matrix)

Output:
2.0

[[1. 1.]
[1. 1.]]

Table 10.32: Variance and covariance in NumPy

o Covariance in Pandas: In Pandas, we can compute covariance
between columns using df.cov(), which generates a covariance
matrix showing how variables vary together. For Series,
seriesl.cov(series2) calculates their pairwise covariance directly.

Example 10.34: Covariance in Pandas:

Calculate the covariance between two DataFrame Output:
columns 1.

covariance_value = df['Varl'].cov(df['Var2'])

print(covariance_value)

0

Table 10.33: Covariance in Pandas
¢ Correlation coefficient:

o Correlation coefficient in NumPy: In NumPy, we can calculate the
Pearson correlation coefficient using np.corrcoef (), which returns

a correlation matrix showing linear relationships
matrix columns.

Example 10.35: Correlation coefficient in NumPy:

between arrays or

Calculate the correlation coefficient between two
vectors

correlation_matrix = np.corrcoef(x, y)
Returns a 2x2 correlation matrix
print(correlation_matrix)

Output:
[[1. 1.]
[1. 1.]]

Table 10.34: Correlation Coefficient in NumPy

o Correlation coefficient in Pandas: In Pandas, you can compute
correlation coefficients using df.corr() (for a full correlation
matrix) or seriesl. corr(series2) for pairwise correlation.

Example 10.36: Correlation coefficient in Pandas:

Calculate the correlation between two DataFrame columns Output:
correlation_value = df['Varl'].corr(df['Var2']) 1.0
print(correlation_value)

Table 10.35 : Correlation coefficient in Pandas
e Histograms: Histograms may be easily created using Matplotlib, which
is a popular plotting library in Python.
Example 10.37: Histogram creation
import matplotlib.pyplot as plt
Create a histogram of a vector
data = np.random.randn(1000) # Generate random data
plt.hist(data, bins=30, edgecolor='black"')
plt.xlabel('Value')
plt.ylabel('Frequency"')
plt.title('Histogram of Random Data')
plt.show()

Histogram of Random Data

100 4

80

Frequency
h
]

e
=
1

20 4

-3 -2 -1 0 1 2 3 4
Value

Figure 10.2: Histogram creation in Python

This section focused on statistical analysis and data manipulation features in
Python with NumPy and Pandas. Python's tools make it useful to work with
numerical and organized data. The examples demonstrated indexing,
reshaping, sorting, and filtering of data. The calculation of statistical
measures like mean, standard deviation, and correlation coefficients is also
discussed.

In the next section, we will compare MATLAB and Python codes with an
analysis of their syntax and functionality.

10.3 Comparative study via MATLAB and Python
codes

Let us look at some facets of comparisons in this section.

10.3.1 Data manipulation

Data manipulation is a basic aspect of scientific computing and data
analysis. MATLAB and Python offer powerful tools for this purpose, though
with different approaches.

MATLAB 1is a high-performance numerical computing environment
optimized for matrix operations. It provides built-in functions for data
filtering, sorting, and transformation. MATLAB's syntax is mainly intuitive
for linear algebra tasks, such as matrix multiplication (A*B) or solving
systems of equations (A\b). The language also includes toolboxes for
specialized tasks like signal processing and statistical analysis.
Python, on the other hand, is an open-source, general-purpose language with
extensive libraries for data manipulation. Key libraries include:
e NumPy: It is optimized for numerical operations, offering array-based
computations similar to MATLAB.
e Pandas: It provides DataFrame structures for tabular data, enabling
SQL-like operations (filtering, grouping, merging).
e SciPy: It extends NumPy with advanced mathematical and statistical
functions.

Python’s flexibility makes it better for integrating data analysis with web
scraping, machine learning (via scikit-learn), and automation tasks. While
MATLAB excels in engineering and simulation, Python dominates in data
science due to its ecosystem and scalability.

Example 10.38: Create a row vector in MATLAB and Python.
MATLAB:

row_vector = [1, 2, 3, 4, 5] Output:
row_vector =
1 2 3 4 5
Table 10.36: Creation of a row vector in MATLAB
Python (NumPy):
import numpy as np Output:

row_vector = np.array([1, 2, 3, 4, 5]) |[1 2 3 4 5]
print(row_vector)

Table 10.37: Creation of a row vector in Python
Example 10.39: Create a column vector in MATLAB and Python.
MATLAB:

column_vector = [1; 2; 3; 4; 5] Output:
column_vector =
1

i A W N

Table 10.38: Creation of a column vector in MATLAB
Python (NumPy):

column_vector = np.array([[1], [2], Output:

[31, [4], [51D) [[1]

print(column_vector) [2]
[3]
[4]
[51]

Table 10.39: Creation of a column vector in Python
Example 10.40: Create a 3x3 matrix in MATLAB and Python.
MATLAB:

matrix = [1, 2, 3; 4, 5, 6; 7, 8, 9] Output:
matrix =
1 2 3
4 5 6
7 8 9

Table 10.40: Creation of a 3x3 matrix in MATLAB
Python (NumPy):

matrix = np.array([[1, 2, 3], [4, 5, Output:

6], [7, 8, 91]) [[1 2 3]

print(matrix) [4 5 6]
[7 8 9]]

Table 10.41: Creation of a 3x3 matrix in Python

Example 10.41: Access the element in the 2nd row, 3rd column of a matrix
in MATLAB and Python.

MATLAB:

matrix = [1, 2, 3; 4, 5, 6; 7, 8, 9] Output:

element = matrix(2, 3) matrix =
1 2 3
4 5
7 8
element =
6

Table 10.42: Accessing specific element in MATLAB

Python (NumPy):
matrix = np.array([[1, 2, 3], [4, 5, Output:
61, [7, 8, 911) 6

element = matrix[1, 2]
print(element)

Table 10.43: Accessing specific element in Python
Example 10.42: Slice the first two rows of a matrix in MATLAB and

Python.
MATLAB:
matrix = [1, 2, 3; 4, 5, 6; 7, 8, 9] Output:
sliced_matrix = matrix(1:2, :) matrix =
1 2 3
4 5 6
7 8 9
sliced_matrix =
1 2 3
4 5 6
Table 10.44: Slicing of rows in MATLAB
Python (NumPy):
matrix = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) |Output:
sliced matrix = matrix[0:2, :] [[1 2 3]

print(sliced matrix) [45 6]]

Table 10.45: Slicing of rows in Python

Example 10.43: Reshape a 3x3 matrix into a 1x9 vector in MATLAB and
Python.

MATLAB:

matrix = [1, 2, 3; 4, 5, 6; 7, 8, 9]
reshaped_vector

reshape(matrix, 1, 9)

Output:
matrix =
1 2 3
4 5 6
7 8 9
reshaped_vector =
1 4 7
8 3 6 9

Table 10.46: Reshaping of matrix in MATLAB

Python (NumPy):

matrix = np.array([[1, 2, 3], [4, 5, 6],
[7, 8, 911)
reshaped_vector

matrix.reshape(1, 9)
print(reshaped_vector)

Output:
[[123456 7 8 9]]

Table 10.47: Reshaping of matrix in Python

Example 10.44: Concatenate two matrices vertically in MATLAB and

Python.
MATLAB:
A=1[12; 3 4] Output
B=1[56; 7 8] =
C = [A; B] % Vertical concatenation 1 2
3 4
B =
6
8
C =
1 2
3 4
5 6
7 8

Table 10.48: Concatenation of matrices vertically in MATLAB

Python (NumPy):

A = np.array([[1, 2], [3, 4]]) Output:
B = np.array([[5, 6], [7, 8]]) [[1 2]
C = np.vstack((A, B)) # Vertical [3 4]

concatenation

print(C) [5 6]
[7 8]]

Table 10.49: Concatenation of matrices vertically in Python

Example 10.45: Concatenate two matrices horizontally in MATLAB and
Python.

MATLAB:
A=1[12; 3 4] Output
B=[56; 7 8] =
C = [A, B] % Horizontal concatenation ; i
B =
5 6
7 8
C =
1 2 5 6
3 4 7 8

Table 10.50: Concatenation of matrices horizontally in MATLAB
Python (NumPy):

A = np.array([[1, 2], [3, 41]) Output:
B = np.array([[5, 6], [7, 8]]) [[1 25 6]
C = np.hstack((A, B)) [3 47 8]]

Horizontal concatenation
print(C)

Table 10.51: Concatenation of matrices horizontally in Python
Example 10.46: Filter elements greater than 3 in a matrix in MATLAB and

Python.
MATLAB:

matrix = [1 2 3; 4 56; 51 2]

filtered _elements = matrix(matrix > 3)

Output:

matrix =
1
4
5

4

5
5
6

2
5
1

filtered_elements

Table 10.52: Filtering elements MATLAB code

Python (NumPy):
matrix = np.array([[1, 2, 3], [4, 5, 6], |Output:
[7, 8, 911 [456 7 8 9]

filtered_elements = matrix[matrix > 3]
print(filtered_elements)

Table 10.53: Filtering elements Python code
Example 10.47: Sort a vector in ascending order in MATLAB and Python.
MATLAB:

row_vector = [12 11 2 1 12 23] Output:
sorted_vector = sort(row_vector) row_vector =
12 11 2 1 12
23
sorted_vector =
1 2 11 12 12
23

Table 10.54: Sorting in MATLAB

Python (NumPy):
row_vector = np.array([11, 2, 13, 40, Output:
51D [2 5 11 13 40]

sorted_vector = np.sort(row_vector)
print(sorted vector)

Table 10.55: Sorting in Python

10.3.2 Statistical functions

MATLAB and Python offer useful tools for statistical analysis, but with
distinct advantages. MATLAB's statistics and machine learning toolbox
provides concise, matrix-oriented functions for descriptive stats (mean(),
std()), hypothesis testing (ttest, anoval), and regression (fitlm),
which is ideal for engineers and interactive workflows. Python, provides
open-source libraries like SciPy (scipy.stats), Pandas
(df.describe(), corr()), and StatsModels, which excels in
flexibility, handling real-world data (missing values, mixed types), and

integrating with machine learning (scikit-learn) or visualization (Seaborn).
While MATLAB simplifies matrix math and includes GUI tools, Python

provides free access, scalability, and a broader ecosystem, which make it

dominant in data science.
Example 10.48: Calculate the mean
MATLAB:

of a vector in MATLAB and Python.

data = [10 20 30 40 50] Output:
mean_value = mean(data) data =
10 20 30 40 50
mean_value =
30
Table 10.56: Mean of a vector in MATLAB
Python (NumPy):
data = np.array([11, 2, 13, 40, 5]) Output:
mean_value = np.mean(data) 14.2

print(mean_value)

Table 10.57: Mean of a vector in Python
Example 10.49: Calculate the standard deviation of a vector in MATLAB

and Python.
MATLAB:
data = [10 20 30 40 50] Output:
std_value = std(data) data =
10 20 30 40 50
std_value =
15.8114

Table 10.58: Standard deviation of a vector in MATLAB

Python (NumPy):

data = np.array([11, 2, 13, 40, 5])
std value = np.std(data)
print(std_value)

Output:
13.49666625504239

Table 10.59: Standard deviation of a vector in Python
Example 10.50: Calculate the variance of a vector in MATLAB and Python.

MATLAB:

data = [10 20 30 40 50]
variance _value = var(data)

Output:
data =

10 20 30 490 50
variance_value =
250

Table 10.60: Variance of a vector in MATLAB

Python (NumPy):

data = np.array([11, 2, 13, 40, 5])
variance value = np.var(data)

print(variance_value)

Output:
182.16

Table 10.61: Variance of a vector in Python
Example 10.51: Calculate the correlation coefficient between two vectors in

MATLAB and Python.

MATLAB:

x = [1; 2]; Output:

y = [35 415 corr_coeff =
corr_coeff = corrcoef(x, y) % Returns a 2x2 1.0000 1.0000
matrix 1.0000 1.0000

Table 10.62: Correlation coefficient between two vectors in MATLAB

Python (NumPy):

import numpy as np
Define column vectors
x = np.array([[1], [2]])

y = np.array([[3], [4]])
Convert to 1D arrays

corr_coeff = np.corrcoef(x.flatten(),
y.flatten())
Print the result

2x1
2x1

corr_coeff)

print("Correlation coefficient matrix:\n",

Output:

Correlation
matrix:

[[1. 1.]
[1. 1.]]

coefficient

Table 10.63: Correlation coefficient between two vectors in Python
Example 10.52: Calculate the covariance between two vectors in MATLAB

and Python.
MATLAB:

x = [1; 2];

Output:

y = [3; 4]; covariance_matrix =
0.5000 0.5000

covariance_matrix = cov(x, y) % Returns a 2x2
0.5000 0.5000

matrix

Table 10.64: Covariance between two veciors in MATLAB

Python (NumPy):
import numpy as np Output:
Define column vectors Covariance matrix:

x = np.array([[1], [2]]) # 2x1
y = np.array([[3], [4]]) # 2x1
Convert to 1D arrays before computing [0.5 ©.5]]
covariance

covariance_matrix = np.cov(x.flatten(),
y.flatten())

Print the covariance matrix
print("Covariance matrix:\n",
covariance_matrix)

[[0.5 @.5]

Table 10.65: Covariance between two vectors in Python

10.3.3 Working with tables/DataFrames

MATLAB's table and Python's DataFrame (from Pandas) are essential
structures for handling tabular data, but differ in functionality and flexibility.
MATLAB's table organizes data with named columns, supports mixed data
types, and integrates well with MATLAB's statistical tools which enable
operations like summary() or filtering with logical indexing. However, it
lacks some advanced data manipulation features. Whereas Python's Pandas
DataFrame is more versatile and offers operations such as groupby(),
pivot_table(), and seamless handling of missing data (dropna(),
fillna()). It also integrates with Python's broader ecosystem (NumPy,

Scikit-learn) for machine learning and visualization.
Example 10.53: Create a table in MATLAB and a DataFrame in Python.
MATLAB:

data = table([1; 2; 3], [4; 5; 6], Output:
'VariableNames', {'Varl', 'Var2'}) data =
Varl Var2

1 4
2 5
3 6

Table 10.66: Creation of a table in MATLAB

Python (Pandas):

import pandas as pd Output:

data = pd.DataFrame({‘varl’: [1, 2, 3], Varl Var2

‘Var2’: [4, 5, 6]}) 0 1 4

print(data) 1 2 5
2 3 6

Table 10.67: Creation of DataFrame in Python

Example 10.54: Access a specific column in a table/DataFrame in
MATLAB and Python.

MATLAB:
data = table([1; 2; 3], [4; 5; 6], Output:
'VariableNames', {'Varl', 'Var2'}) data =
varl data = data.Varl Varl Var2
1 4
2 5
3 6
varl_data =
1
2
3
Table 10.68: Accessing a specific column in a table in MATLAB
Python (Pandas):
varl_data = data[“Varl’] Output:
print(varl_data) o 1
1 2
2 3
Name: Varl, dtype: inte64

Table 10.69: Access a specific column in a DataFrame in Python

Example 10.55: Filter rows where a column's value is greater than 2 in
MATLAB and Python.

MATLAB:
data = table([1; 2; 3], [4; 5; 6], Output:
'VariableNames', {'Varl', 'Var2'}) data =

filtered_table = data(data.varl > 2, :) Varl Var2

1 4
2 5
3 6
filtered_table =
Varl Var2

3 6
Table 10.70: Filtering of rows with specific condition in MATLAB
Python (Pandas):
filtered_df = data[data[‘Varl’] > 2] Output:
print(filtered_df) Varl Var2
2 3 6

Table 10.71: Filtering of rows with specific condition in Python
Example 10.56: Sort a table/DataFrame by a specific column in MATLAB

and Python.
MATLAB:
data = table([11; 2; 13], [14; 50; 16], |Output:
'VariableNames', {'Varl', 'Var2'}) data =
sorted_table = sortrows(data, 'Varl') Varl Var2
11 14
2 50
13 16
sorted_table =
Varl Var2
2 50
11 14
13 16
Table 10.72: Sorting a table by a specific column in MATLAB
Python (Pandas):
sorted_df = data.sort_values(by='Varl') Output:
print(sorted_df) Varl Var2
() 1 4
1 2 5
2 3 6

Table 10.73: Sorting a DataFrame by a specific column in Python
Example 10.57: Add a new row to a table/DataFrame in MATLAB and

Python.

MATLAB:
data = table([11; 2; 13], [14; 50; 16], |Output:
'VariableNames', {'Varl', 'Var2'}) data =
new_row = {4, 7} Varl Var2
data = [data; new_row]
11 14
2 50
13 16
new_row =
[4] [7]
data =

Varl Var2

11 14
2 50
13 16
4 7

Table 10.74: Addition of a new row to a table in MATLAB
Python (Pandas):

new_row = pd.DataFrame({'Varl': [4], 'Var2': Output:
[71}) varl Var2
data = pd.concat([data, new_row], %] 1 4
ignore_index=True) 1 2 5
. 2 3 6
rint(data
g () 3 4 7

Table 10.75: Addition of a new row to a DataFrame in Python

10.3.4 Advanced topics

In this section, some of the advanced topics are discussed regarding the
languages of MATLAB and Python. Some topics discussed are cumulative
sum, element-wise product, dot product, eigenvalues of a matrix, and inverse
of a matrix. A comparative study of mentioned topics is provided via
examples discussion. Python's strength lies in its object-oriented flexibility
and integration with deep learning frameworks, while MATLAB excels in
streamlined syntax for linear algebra tasks. Performance varies by operation;
MATLAB often optimizes matrix math better for small-to-medium datasets,
while Python scales efficiently with large data via NumPy's vectorization.
These languages provide robust solutions, with the choice depending on

specific use cases and ecosystem requirements.

Example 10.58: Calculate the cumulative sum of a vector in MATLAB and
Python.

MATLAB:
data = [10 20 30 40 50] Output:
cumsum_vector = cumsum(data) data =

10 20 30 40 50
cumsum_vector =
10 30 60 100 150

Table 10.76: Cumulative sum of a vector in MATLAB
Python (NumPy):
data = np.array([10, 20, 30, 40, 50]) Output:

cumsum_vector = np.cumsum(data) [106 30 60 100 150]
print(cumsum_vector)

Table 10.77: Cumulative sum of a vector in Python

Example 10.59: Calculate the element-wise product of two vectors in
MATLAB and Python.

MATLAB:
x = [1 2]; Output:
y = [34]; elementwise_product =

elementwise product = x .* y

3 8
% Element-wise multiplication

Table 10.78: Element-wise product of two vectors in MATLAB
Python (NumPy):

x = np.array([[1, 2]]) # Explicit 1x2 row Output:
vector [[3 8]]
y = np.array([[3, 4]]) # Explicit 1x2 row

vector

elementwise_product = np.multiply(x, y)
Element-wise multiplication
print(elementwise_product)

Table 10.79: Element-wise product of two vectors in Python

Example 10.60: Calculate the dot product of two vectors in MATLAB and
Python.

MATLAB:

x = [1 2]; Output:
y = [3 4]; dot_product =
dot_product = dot(x, y) 11
Table 10.80: Dot product of two vectors in MATLAB
Python (NumPy):
import numpy as np Output:
Define row vectors Dot product:
x = np.array([[1, 2]]) # 1x2 [[11]]
y = np.array([[3, 4]]) # 1x2
Convert y to a column vector (2x1)

y_column = y.T # Transpose y
Now, perform dot product
dot product = np.dot(x, y column)

print("Dot product:\n", dot product)

Table 10.81: Dot product of two vectors in Python
Example 10.61: Calculate the eigenvalues of a matrix in MATLAB and

Python.
MATLAB:
matrix = [1 2; 3 4]; Output:
eigenvalues = eig(matrix) eigenvalues =
% Returns eigenvalues -0.3723
5.3723
Table 10.82: Eigenvalues of a matrix in MATLAB
Python (NumPy):
matrix = np.array([[1, 2], Output:

[3, 41]) [-0.37228132 5.37228132]
eigenvalues = np.linalg.eigvals(matrix)
Returns eigenvalues

print(eigenvalues)

Table 10.83: Eigenvalues of a matrix in Python
Example 10.62: Calculate the inverse of a matrix in MATLAB and Python.

MATLAB:

matrix = [1 2; 3 4]; Output:
inverse_matrix = inv(matrix) inverse_matrix =
% Returns inverse -2.0000 1.0000

1.5000 -0.5000

Table 10.84: Inverse of a matrix in MATLAB

Python (NumPy):
matrix = np.array([[1, 2], Output:

[3, 41]) [([-2. 1.]
inverse_matrix = np.linalg.inv(matrix) [1.5 -0.5]]

Returns inverse
print(inverse_matrix)

Table 10.85: Inverse of a matrix in Python

10.3.5 Visualization

This section provides some examples regarding the visualization in
MATLAB and Python. A comparative study is provided via the MATLAB
and Python codes, as data visualization is a critical component of data
analysis. MATLAB and Python offer useful tools to create insightful plots,
though with different approaches. MATLAB provides a user-friendly,
integrated environment for visualization with high-level plotting functions
like plot(), scatter(), and surf() for 2D and 3D graphics. Its syntax
is concise and meant for quick visualization of numerical data, which makes
it ideal for engineers and scientists. MATLAB also includes interactive tools
for customizing plots and supports specialized plots like histograms
(histogram()), boxplots (boxplot()), and contour plots (contour()).

Python leverages open-source libraries like Matplotlib, Seaborn, and Plotly
to deliver a highly customizable and extensible visualization framework.
Matplotlib, the foundation for many Python plotting libraries, provides
MATLAB-like syntax with functions such as plt.plot() and
plt.scatter(), while also enabling intricate customization for advanced
users. Seaborn builds on Matplotlib to offer high-level statistical
visualizations (e.g., violin plots, pair plots) with minimal code, and Plotly
adds interactivity for web-based charts.

Example 10.63: Plot a line graph, shown in Figures 10.3 and 0.4, in

MATLAB and Python.

MATLAB:
x=[123456789 10];
y = 2*x;

plot(x, y);
xlabel('X-axis');
ylabel('Y-axis');
title('Line Plot');

Table 10.86: Line graph code in MATLAB

Line Plot
20 T T T T

Y-axis

g k= | | | | | | | |

1 2 3 4 5 [7 8 9
K-axis

Figure 10.3: Line graph in MATLAB

Python (Matplotlib):

import matplotlib.pyplot as plt

X = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) # Define x as a NumPy
array

y =2 *x

plt.plot(x, y)

plt.xlabel('X-axis")

plt.ylabel('Y-axis"')

plt.title('Line Plot')

plt.show()

Table 10.87: Line graph code in Python

Line Plot

20.0 1

H i

15.0 1

12.5 1

axis

> 10.0 -

7.5 1

5.0 1

2.3 1

2 4 6 8 10
X-axis

Figure 10.4: Line graph in Python

Example 10.64: Create a histogram, as shown in Figures 10.5 and 10.6 in
MATLAB and Python.

MATLAB:

data = [10 20 30 40 50 60 70 80]
histogram(data, ‘BinWidth’, ©.5);
xlabel(‘Value’);
ylabel('Frequency');

title('Histogram');

Table 10.88: Histogram code in MATLAB

Histogram

= = =
o N @ » =

Frequency
=
[,

0.4
0.3
0.2
0.1
qlﬂ 20 30 40 50 60 70
Value
Figure 10.5: Histogram in MATLAB
Python (Matplotlib):

80

plt.hist(data, bins=30, edgecolor="'black")
plt.xlabel('Value')
plt.ylabel('Frequency")
plt.title('Histogram')

plt.show()

Table 10.89: Histogram code in Python

Histogram

100 +

80 4

2 B0 A
c
(1]
F
g
(' 40 4
20 1
D -l
=3 -2 -1 0 1 2 3 4
Value
Figure 10.6: Histogram in Python
10.3.6 Miscellaneous

Several examples are discussed in this section to understand the topics in
MATAB and Python. A comparative study will be useful to get full insight
into MATLAB and Python implementations.

Example 10.65: Save a matrix to a file in MATLAB and Python.
MATLAB:

matrix = [1 2; 3 4];

save('matrix.mat', 'matrix');

Python (NumPy):

np.save('matrix.npy', matrix)

Example 10.66: Load a matrix from a file in MATLAB and Python.
MATLAB:

load('matrix.mat"');

Python (NumPy):

matrix = np.load('matrix.npy"')

Example 10.67: Generate random numbers in MATLAB and Python.

MATLAB:

random_numbers = rand(1, 5) Output:
% 5 random numbers between © and |random_numbers =

1 0.6532 0.1084 0.0361 0.6181
0.5671

Table 10.90: Generation of random numbers in MATLAB
Python (NumPy):

random_numbers = np.random.rand(5) # 5 |Output:
random numbers between @ and 1 [0.64198129 9.10938357

print(random_numbers) 0.21068257 0.75185587
0.17875027]

Table 10.91: Generation of random numbers in Python

10.3.7 Additional activities

Example 10.68: Calculate the median of a vector in MATLAB and Python.
MATLAB:

data = [100 200 150 300 500] Output:
median_value = median(data) data =

100 200 150 300 500
median_value =
200

Table 10.92: Median of a vector in MATLAB

Python (NumPy):
data = np.array([100, 200, 150, 300, 500]) Output:
median_value = np.median(data) 200.0

print(median_value)

Table 10.93: Median of a vector in Python
Example 10.69: Calculate the mode of a vector in MATLAB and Python.
MATLAB:

data = [100 100 200 150 300 500] Output:
mode_value = mode(data) data =
% Returns the most frequent value 100 100 200 150 300

500

mode_value =
100

Table 10.94: Mode of a vector in MATLAB

Python (SciPy):
from scipy import stats Output:
import numpy as np Mode: 100

Define data
data = np.array([100, 200, 150, 300, 500])
Compute mode

mode_result = stats.mode(data,
keepdims=True) # Ensures correct shape
handling

Extract mode value
mode_value = mode result.mode[0]
print("Mode:", mode_value)

Table 10.95: Mode of a vector in Python
Example 10.70: Calculate the factorial of a number in MATLAB and

Python.
MATLAB:
factorial value = factorial(5); Output:
factorial value =
120

Table 10.96: Factorial of a number in MATLAB

Python (Math):
import math Output:
factorial_value = math.factorial(5) 120

print(factorial value)

Table 10.97: Factorial of a number in Python

Example 10.71: Calculate the exponential of a number in MATLAB and
Python.

MATLAB:
exp_value = exp(2) Output:

exp_value =

‘ | 7.3891

Table 10.98: Exponential of a number in MATLAB

Python (NumPy):
exp_value = np.exp(2) Output:
print(exp_value) 7 .38905609893065

Table 10.99: Exponential of a number in Python
Example 10.72: Calculate the logarithm of a number in MATLAB and

Python.
MATLAB:
log value = log(10) Output:

log_value =

2.3026
Table 10.100: Logarithm of a number in MATLAB

Python (NumPy):
log value = np.log(10) Output:
print(log_value) 2.302585092994046

Table 10.101: Logarithm of a number in Python
Example 10.73: Calculate the sine of an angle in MATLAB and Python.
MATLAB:

sine_value = sin(pi/2) Output:

sine_value =
1

Table 10.102: Sine of an angle in MATLAB

Python (NumPy):
sine_value = np.sin(np.pi/2) Output:
print(sine_value) 1.0

Table 10.103: Sine of an angle in Python
Example 10.74: Calculate the cosine of an angle in MATLAB and Python.
MATLAB:

cosine_value = cos(pi) Output:

cosine_value =

-1

Table 10.104: Cosine of an angle in MATLAB

Python (NumPy):
cosine_value = np.cos(np.pi) Output:
print(cosine_value) -1.0

Table 10.105: Cosine of an angle in Python
Example 10.75: Calculate the tangent of an angle in MATLAB and Python.
MATLAB:

tangent_value = tan(pi/4) Output:
tangent_value =
1.0000

Table 10.106: Tangent of an angle in MATLAB

Python (NumPy):
tangent_value = np.tan(np.pi/4) Output:
print(tangent_value) 0.9999999999999999

Table 10.107: Tangent of an angle in Python
Example 10.76: Calculate the square root of a number in MATLAB and

Python.
MATLAB:
sqrt_value = sqrt(16) Output:
sqrt_value =
4
Table 10.108: Square root of a number in MATLAB

Python (NumPy):
sqrt_value = np.sqrt(16) Output:
print(sqrt_value) 4.0

Table 10.109: Square root of a number in Python

Example 10.77: Calculate the absolute value of a number in MATLAB and
Python.

MATLAB:

abs_value = abs(-5)

Output:
abs_value =

5

Table 10.110: Absolute value of a number in MATLAB
Python (NumPy):
abs_value = np.abs(-5)
print(abs_value)

Output:
5

Table 10.111: Absolute value of a number in Python
Example 10.78: Calculate the sum of all elements in a vector in MATLAB

and Python.
MATLAB:
data = [11 12 15 16 18] Output:
sum_value = sum(data) data =
11 12 15 16 18
sum_value =
72

Table 10.112: Sum of all elements in a vector in MATLAB
Python (NumPy):

data = np.array([11, 12, 15, 16, 18])
sum_value = np.sum(data)
print(sum_value)

Output:
72

Table 10.113: Sum of all elements in a vector in Python

Example 10.79: Calculate the product of all elements in a vector in
MATLAB and Python.

MATLAB:

data = [11 12 15 16 18]
prod value = prod(data)

Output:
data =

11 12 15 16 18
prod_value =

570240

Table 10.114: Product of all elements in a vector in MATLAB
Python (NumPy):

data = np.array([11, 12, 15, 16, 18]) Output:
prod_value = np.prod(data) 570240
print(prod_value)

Table 10.115: Product of all elements in a vector in Python
Example 10.80: Calculate the maximum value in a vector in MATLAB and

Python.
MATLAB:
data = [11 12 15 16 18] Output:
max_value = max(data) data =
11 12 15 16 18
max_value =
18
Table 10.116: Maximum value in a vector in MATLAB
Python (NumPy):
data = np.array([11, 12, 15, 16, 18]) Output:
max_value = np.max(data) 18

print(max_value)

Table 10.117: Maximum value in a vector in Python
Example 10.81: Calculate the minimum value in a vector in MATLAB and

Python.
MATLAB:
data = [11 12 15 16 18] Output:
min_value = min(data) data =
11 12 15 16 18
min_value =
11
Table 10.118: Minimum value in a vector in MATLAB
Python (NumPy):
data = np.array([11, 12, 15, 16, 18]) |[Output:
min_value = np.min(data) 11

print(min_value)

Table 10.119: Minimum value in a vector in Python

Example 10.82: Calculate the unique elements in a vector in MATLAB and

Python.
MATLAB:
data = [11 11 12 12 15 15 16 16 |Output:
18] data =
16 18
unique_values =
11 12 15 16 18

Table 10.120: Unique elements in a vector in MATLAB

Python (NumPy):

data np.array([11, 11, 12, 12, 15,
15, 16, 16, 18])

unique_values

np.unique(data)
print(unique_values)

Output:
[11 12 15 16 18]

Table 10.121: Unique elements in a vector in Python
Example 10.83: Calculate the cross product of two vectors in MATLAB and

Python.
MATLAB:
cross_product = cross([1, 2, 3], [4, 5, |Output:
6]) cross_product =
-3 6 -3
Table 10.122: Cross product of two vectors in MATLAB
Python (NumPy):

cross_product
5, 6])

print(cross_product)

np.cross([1, 2, 3], [4,

Output:
[-3 6 -3]

Table 10.123: Cross product of two vectors in Python
Example 10.84: Calculate the determinant of a matrix in MATLAB and

Python.
MATLAB:

matrix = [1 0 0; 01 0; 0 0 1]

Output:

matrix =

det_value = det(matrix)

1 ()

0 1
0 0

det_value =
1

Table 10.124: Determinant of a matrix in MATLAB

Python (NumPy):

matrix = np.array([Output:
[1, o, o], 1.0
[e) 1) e])
[0, 0, 1]

1)
det_value = np.linalg.det(matrix)

print(det_value)

Table 10.125: Determinant of a matrix in Python
Example 10.85: Calculate the trace of a matrix in MATLAB and Python.

MATLAB:

matrix = [1 © 0; 06 10; 00 1];
trace_value = trace(matrix)

Output:

trace_value =
3

Table 10.126: Trace of a matrix in MATLAB

Python (NumPy):

matrix = np.array([Output:
[1J 0) e]) 3
[6, 1, @],
[0, 6, 1]

D

trace _value = np.trace(matrix)
print(trace_value)

Table 10.127: Trace of a matrix in Python
Example 10.86: Calculate the rank of a matrix in MATLAB and Python.

MATLAB:

matrix = [1 ©0; 0 10; 00 1];
rank_value = rank(matrix)

Output:

rank_value =
3

Table 10.128: Rank of a matrix in MATLAB

Python (NumPy):

matrix = np.array([Output:
[1, o, @], 3
[6, 1, @],
[0, 6, 1]

D

print(rank _value)

rank_value = np.linalg.matrix_rank(matrix)

Table 10.129: Rank of a matrix in Python
Example 10.87: Calculate the pseudo-inverse of a matrix in MATLAB and

Python.
MATLAB:

matrix = [1 2 3; 61 0; 45 7];
pinv_matrix = pinv(matrix)
% Returns pseudo-inverse

Output:

pinv_matrix =
-1.4000 -0.2000 0.6000
0.0000 1.0000 -0.0000
0.8000 -0.6000 -0.2000

Table 10.130: Pseudo-inverse of a matrix in MATLAB

Python (NumPy):

matrix = np.array([Output:
[1, 2, 3], [[-1.40000000e+00 -2.00000000e-01
[0, 1, o], 6.00000000e-01]
[4, 5, 7] [1.51990405e-16 1.00000000e+00

D)
pinv_matrix =
np.linalg.pinv(matrix)

Returns pseudo-inverse

print(pinv_matrix)

-3.95950691e-17]

[8.00000000e-01
-2.00000000e-01]]

-6.00000000e-01

Table 10.131: Pseudo-inverse of a matrix in Python

Conclusion

This chapter provided a comprehensive guide to handling, analyzing, and
preprocessing data in MATLAB and Python, equipping readers with
essential skills for real-world applications. In MATLAB, you learned key

techniques for data manipulation, including merging and splitting datasets,
as well as handling missing values. Statistical computations like mean
(mean) and standard deviation (std) were covered. The use of tables for
structured data storage and operations was also emphasized.

In Python, the focus shifted to powerful libraries like Pandas and NumPy,
where you explored data manipulation with DataFrames, statistical functions
(np.mean, np.std), and handled missing values. This chapter highlighted the
differences in syntax and functionality between the two platforms while
reinforcing their shared goals: efficient data wrangling and insightful
analysis.

By mastering these tools, you can now tackle diverse challenges, from
cleaning sensor data in engineering to analyzing financial trends or preparing
datasets for machine learning. Whether using MATLAB’s matrix-based
operations or Python’s flexible libraries, the skills gained here form a strong
foundation for data-driven decision-making in research, industry, and
beyond.

In the next chapter, you will learn about signal processing and image
processing in MATLAB and Python.

Exercises

MATLAB

Data manipulation:
1. Given the following matrix, extract the second column:

3 5 7
A=12 6 8
1 4 9

2. Create a 5X5 matrix of random integers between 1 and 100. Replace all
elements greater than 50 with 50.

3. Given a row vector v = [2,4,6,8,10], reshape it into a 2X3 matrix, filling
the missing element with zero.

4. Generate a 10X10 identity matrix and set the diagonal elements to 5
instead of 1.

5. Given the following matrix, compute the cumulative sum along the

rOWS:
1 2 3
B=14 5 6
7 8 9

6. Extract all even numbers from the matrix M = randi([1,50],4,4).
7. Flip a given 5X35 matrix along its main diagonal.

8. Concatenate two matrices, 4 and B, of size 3X3 horizontally and
vertically.

Statistical functions:
1. Compute the mean and standard deviation of the elements in matrix C =
randi([1,100], 5, 5).
2. Find the correlation coefficient between two vectors X = [1,2,3,4,5] and
Y=1[2,4,6,8,10].
3. Compute the variance and skewness of a dataset stored in a column
vector.

4. Given a time series dataset, compute the moving average of window
size 5.

. Compute the median and interquartile range (IQR) for a given dataset.
. Create a normally distributed dataset of size 1000 and plot its histogram.

~N O\ W

. Determine the mode of a given dataset with repeated values.
8. Compute the z-score normalization for a dataset D in MATLAB.
Working with tables:

1. Create a MATLAB table with three columns: "Student Name", "Marks",
and "Grade" with five student records.

2. Import data from a CSV file into a table and display its first five rows.
3. Sort a given table based on the "Age" column in descending order.
4. Convert a MATLAB table into a cell array and extract the first column.

5.

6.

7.
8.
9.

Remove rows from a table where the "Salary" column has missing
values.

Add a new computed column "Performance" to an existing table where
performance is defined as Marks X 1.2.

Extract only those rows where "Marks" is greater than 80.
Merge two tables having common column names.
Convert a numeric array into a table with appropriate column names.

Python

Data manipulation with Pandas, NumPy:

l.

8.
0.
10.

Create a Pandas DataFrame with three columns: "ID", "Name", and
"Score" with at least 5 rows.

. Given a NumPy array arr = np.array([10, 20, 30, 40, 50]), replace all

elements greater than 30 with 100.

. Extract all odd numbers from a NumPy array of random integers

between 1 and 50.

. Reshape a 1D NumPy array into a 4X3 matrix.
. Create a DataFrame from a dictionary containing student names and

SCOrces.

.Read a CSV file into a Pandas DataFrame and display its column

names.

.Add a new column "Final Score" to an existing DataFrame by

multiplying "Score" by 1.1.

Drop rows from a DataFrame where the "Age" column has NaN values.
Filter out students who scored more than 90 in a DataFrame.

Group a DataFrame by "Department" and compute the mean salary.

Statistical analysis:

l.

2.

3.

Compute the mean, median, and standard deviation of a NumPy array
containing 1000 random numbers.

Compute the correlation matrix of a given Pandas DataFrame containing
numerical columns.

Generate a normally distributed dataset of 5000 points and plot its
histogram.

4. Calculate the z-scores of a given dataset using scipy.stats.zscore().

10.

. Compute the variance and skewness of a given dataset using Pandas.
. Given two lists, X = [10,15,20,25,30] and Y = [5,7,9,11,13], compute

their Pearson correlation coefficient.

. Find the mode of a dataset using Pandas.
. Perform a ¢-test between two independent samples using SciPy.
. Compute a rolling mean with a window size of 4 for a Pandas

DataFrame column.
Generate a dataset and apply Min-Max normalization.

Advanced questions:

1

. Write a MATLAB function that takes an array and returns the mean,

variance, and standard deviation.

. Write a Python function that takes a Pandas DataFrame and normalizes

all numeric columns.

.In MATLAB, generate a dataset of 1000 points following a Poisson

distribution and plot the histogram.

. In Python, generate a dataset of 2000 points following an exponential

distribution and compute its mean and variance.

. Write a MATLAB script to read a CSV file, perform basic data

preprocessing (handling NaNs, normalization), and save the cleaned
data.

Join our Discord space

Join our Discord workspace for latest updates, offers, tech happenings
around the world, new releases, and sessions with the authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/

CHAPTER 11

Signal and Image Processing in
MATLAB and Python

Introduction

The present chapter explores techniques that are used in signal processing
and image processing in MATLAB and Python environments. MATLAB and
Python provide robust tools and libraries regarding the processing of signals
and 1mages, which makes them significant in fields such as
telecommunications, audio analysis, and computer vision. This chapter is
divided into three sections: MATLAB-based content with examples, Python-
based content with examples, and a comparative study of MATLAB and
Python codes with examples.

Structure

In this chapter, we will learn the following topics:
e 11.1. MATLAB-based concepts
e 11.2. Python-based concepts
e 11.3. Comparative study of MATLAB and Python codes

Objectives

This chapter equips readers with practical skills in signal and image
processing using MATLAB and Python, which focus on several real-world
applications. By the end of this chapter, readers will be able to process and
analyze signals for applications such as audio enhancement, noise reduction,
and time-series data processing. They will also learn to implement image
processing techniques for tasks such as object detection, medical imaging,
and automated inspection using MATLAB and Python libraries and apply
Python tools (OpenCV, scikit-image, and PIL) and MATLAB functions to
manipulate and enhance images for computer vision and remote sensing.

Readers will develop solutions for real-world problems, including speech
processing, sensor data analysis, facial recognition, and image classification.
They hands-on examples and case studies, readers will gain the expertise to
tackle challenges in telecommunications, audio analysis, and computer
vision using these powerful programming environments.

11.1 MATLAB-based content

MATLAB is useful in signal and image processing, offering a vast range of
built-in functions and visualization tools. This section provides a detailed
analysis of signal and image processing aspects in MATLAB, with practical
examples and explanations. MATLAB's signal processing toolbox provides
specialized functions for filtering, spectral analysis, and wavelet transforms,
which enable efficient noise removal and feature extraction from signals. For
image processing, the image processing toolbox supports aspects like edge
detection, segmentation, and morphological operations with high precision.
Moreover, MATLAB’s seamless integration with Simulink facilitates the
simulation and testing of signal processing algorithms in dynamic systems.

11.1.1 Signal processing in MATLAB

Signal processing includes analysis and synthesis of signals such as audio,
video, and sensor data. MATLAB offers a complete set of tools to work with
signals, including filtering, Fourier transforms, and noise reduction.

Key concepts regarding signal processing in MATLAB:

Signal representation: Signals are represented as vectors or matrices.
Filtering: Techniques for noise reduction and signal enhancement.
Fourier transform: Frequency domain analysis using Fast Fourier
transform (FFT).

Applications: Audio signal enhancement, noise reduction, and speech
processing.

Diversified examples are provided in this section to understand the different
aspects of signal processing in MATLAB.

Example 11.1: Noise reduction using a moving average filter (See Figure
11.1)

Objective: Generate a noisy signal, apply a moving average filter to reduce
noise, and visualize results.

Step 1: Generate a noisy signal

%
t
X

0:0.001:1; % Time vector (1 second duration)
sin(2*pi*50*t) + 0.5*randn(size(t)); % 50 Hz sine

wave with noise

% Step 2: Plot the noisy signal
subplot(2,1,1);

plot(t, x);

title('Noisy Signal');
xlabel('Time (s)');
ylabel('Amplitude');

% Step 3: Apply a moving average filter

windowSize = 10; % Window size for the moving average
b = (1/windowSize)*ones(1l, windowSize); % Filter
coefficients

a

1; % Denominator coefficient

y filtered = filter(b, a, x); % Apply the filter

% Step 4: Plot the filtered signal
subplot(2,1,2);

plot(t, y filtered);
title('Filtered Signal');
xlabel('Time (s)');
ylabel('Amplitude');

Noisy Signal
- T T T
%2_" h \' b I Lok Tuiknd ' l' 4]
2 o .'.L ’ I\I | ,IQJ |H|f lJi Ji |1 A | || i il ,l', II‘Tr "l-‘-}"l ;IF le | i Wi '||| il
g i § | J \ I '1 i ||‘ r1 R | i (y"
E_OJ ||I-|| |||'| j'l F V10 8 R 'Ifr?_
4 1 1 1 | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 1
Time (s)
Filtered Signal
2 T T —T T T T
8 1
2
£
Zof |
-1 | { ' AR B L JE IR
0 2.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (s)

Figure 11.1: Noise reduction using moving average filter in MATLAB

The explanation of the preceding code is as follows:
e Noisy signal: A 50 Hz sine wave is generated and corrupted with
Gaussian noise.
e Moving average filter: A simple moving average filter is designed to
smooth the signal.
 Filter application: The filter function applies the moving average filter.
e Visualization: The noisy and filtered signals are plotted for comparison.

11.1.2 Image processing in MATLAB

Image processing focuses on enhancing and analyzing images to extract
information or improve their quality. MATLAB provides tools for image
filtering, edge detection, and feature extraction.

The key concepts regarding image processing in MATLAB:
e Image representation: Images are represented as matrices.
e Color spaces: RGB, grayscale, and other color spaces.

e Applications: Object detection, image restoration, and medical image
analysis.
Several examples are discussed in this section to understand the different
aspects of image processing in MATLAB.

Example 11.2: Image filtering using Gaussian blur (See Figure 11.2)

Objective: Read an image, convert it to grayscale, apply a Gaussian blur,
and visualize the results.

% Step 1: Read an image

img = imread('imagefile.jpg'); % Load the image

% Step 2: Convert to grayscale
img_gray = rgb2gray(img); % Convert RGB image to
grayscale

% Step 3: Apply a Gaussian filter
img filtered = imgaussfilt(img_gray, 2); % Apply
Gaussian blur with sigma = 2

% Step 4: Display the results
figure;

subplot(1,2,1);
imshow(img_gray);
title('Original Image');
subplot(1,2,2);
imshow(img_filtered);
title('Filtered Image');

Note: The sigma parameter in imgaussfilt(img, sigma) controls
the standard deviation of the Gaussian distribution used to blur the
image. It directly influences how much the image is smoothed.

e Low sigma (e.g., 0.5 or 1): Only slight blurring occurs. Edges and fine
details are mostly preserved.

e Moderate sigma (e.g., 2): Noticeable blurring that smooths out small
details and reduces noise.

e High sigma (e.g., 5 or more): Strong blurring that can make edges and
textures almost unrecognizable.

Increasing sigma makes the blur effect stronger by using a wider kernel,
which averages pixel values over a larger neighborhood.

This makes sigma a tunable parameter depending on whether the goal is
noise reduction, edge softening, or artistic effect.

Original Image Filtered Image

Figure 11.2: Image filtering using Gaussian blur in MATLAB

Let us look at the explanation:
e Image loading: The imread function reads image file.
e Grayscale conversion: The rgb2gray function converts RGB image
to grayscale.
e Gaussian blur: The imgaussfilt function applies a Gaussian blur to
image.
e Visualization: Original and filtered images are displayed side by side.
Example 11.3: Edge detection using the Canny method (See Figure 11.3)

Objective: Detect edges in a grayscale image using the Canny edge
detection algorithm.

% Step 1: Read and convert image to grayscale

img = imread('imagefile.jpg');

img_gray = rgb2gray(img);

% Step 2: Detect edges using Canny method
edges = edge(img_gray, 'Canny'); % Apply Canny edge
detection

% Step 3: Display edges
figure;

imshow(edges);
title('Edge Detection');

Edge Detection

Figure 11.3: Edge detection using the Canny method in MATLAB

Explanation:

e Image loading and conversion: The image is loaded and converted to
grayscale.

e Edge detection: Edge function with the 'Canny’ option detects edges
in image.
e Visualization: Detected edges are displayed.

11.1.3 Advanced applications

In this section, an example is discussed to clear the aspect of object detection

in an image in MATLAB. Step by step process is discussed in the provided
MATLAB code to understand the concept. MATLAB provides a powerful
and user-friendly platform to implement such tasks using built-in functions
for color space transformation, thresholding, and image manipulation. In this
section, the concept of object detection is demonstrated using color
thresholding in the hue, saturation, value (HSV) color space. HSV is often
preferred over RGB for color-based segmentation because it separates
chromatic content (hue and saturation) from intensity information (value),
allowing for more intuitive thresholding.

Example 11.4: Object detection in an image (See Figure 11.4)
Objective: Detect objects in an image via color thresholding.

% Step 1: Read image
img = imread('imagefile.jpg');

% Step 2: Convert to HSV color space
img hsv = rgb2hsv(img); % Convert RGB to HSV

% Step 3: Define a color threshold for object detection
hue_threshold = [0.1, ©.5]; % Hue range for the object
saturation_threshold = [0.4, 1]; % Saturation range
value threshold = [0.5, 1]; % Value range

% Step 4: Create a binary mask

mask = (img_hsv(:,:,1) >= hue_threshold(1) &

(img_hsv(:,:,1) <= hue_threshold(2)) & ...
(img_hsv(:,:,2) >= saturation_threshold(1l)) &

(img_hsv(:,:,2) <= saturation_threshold(2)) & ...
(img_hsv(:,:,3) >= value_threshold(1)) &

(img_hsv(:,:,3) <= value threshold(2));

% Step 5: Apply mask to original image
img object = bsxfun(@times, img, cast(mask, 'like’,
img));

% Step 6: Display results

figure;

subplot(1,2,1);
imshow(img);
title('Original Image');
subplot(1,2,2);
imshow(img_object);
title('Detected Object');

Original Image

Detected Object

Figure 11.4: Object detection in an image in MATLAB

Explanation:

e Color space conversion: The image is transformed to HSV color space
for better color segmentation.

Where:

o H: Hue (color type, represented as an angle on a color wheel)
o S: Saturation (intensity or purity of the color)

o V: Value (brightness or lightness of the color)

e Thresholding: A binary mask is created based on stated hue, saturation,
and value ranges.

e Mask application: Mask is applied to the original image to isolate the
object.
e Visualization: The original image and the detected object are displayed.

This section offers a detailed introduction to signal and image processing in
MATLAB, with practical examples. The next section will explore Python-
based implementations.

11.2 Python-based content

Python 1s a multipurpose programming language with an enhanced
ecosystem of libraries for signal and image processing. Libraries such as
NumPy, SciPy, librosa, OpenCV, and scikit-image make Python a useful tool
for analyzing signals and images. This section provides a detailed idea
regarding signal and image processing techniques in Python, with practical
examples.

11.2.1 Signal processing in Python

Signal processing includes analysis and modifications of signals such as
audio, video, and sensor data. Python provides libraries like SciPy and
librosa to work with signals, including filtering, Fourier transforms, and
noise reduction.

Key concepts regarding signal processing in Python:
e Signal representation: Signals are signified as NumPy arrays.

e Filtering: Techniques regarding noise reduction and signal
enhancement.

e Fourier transform: Frequency domain analysis using FFT.

e Applications: Audio signal analysis, sensor data processing, and time-
series analysis.

Diversified examples are provided in this section to understand the different
aspects of signal processing in Python. This will create a proper
understanding of the topic.
Example 11.5: Noise reduction using a moving average filter (See Figure
11.5)
Objective: Generate a noisy signal, apply a moving average filter to reduce
noise, and visualize the results.
import numpy as np
import matplotlib.pyplot as plt
Step 1: Generate a noisy signal
t = np.linspace(®, 1, 1000) # Time vector (1 second
duration)
X = np.sin(2 * np.pi * 50 * t) + 0.5 *

np.random.randn(len(t)) # 50 Hz sine wave with noise

Step 2: Plot the noisy signal
plt.figure(figsize=(10, 6))
plt.subplot(2, 1, 1)
plt.plot(t, x)

plt.title('Noisy Signal')
plt.xlabel('Time (s)')
plt.ylabel('Amplitude"’)

Step 3: Apply a moving average filter

window_size = 10 # Window size for the moving average

b = np.ones(window_size) / window size # Filter
coefficients

y filtered = np.convolve(x, b, mode='same') # Apply the
filter

Step 4: Plot the filtered signal
plt.subplot(2, 1, 2)

plt.plot(t, y_filtered)
plt.title('Filtered Signal')
plt.xlabel('Time (s)')
plt.ylabel('Amplitude"’)

plt.tight layout()

plt.show()

Noisy Signal

Amplitude

0.0 0.2 0.4 0.6 0.8 10
Time (s)

Filtered Signal

1.0 A

0.5 4

0.0 4

Amplitude

_1_0 4

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

Figure 11.5: Noise reduction using moving average filter in Python

Explanation:

e Noisy signal: A 50 Hz sine wave is generated and corrupted with
Gaussian noise.

e Moving average filter: A simple moving average filter is designed to
smooth the signal.

e Filter Application: The np.convolve function applies the moving
average filter.

e Visualization: The noisy and filtered signals are plotted for comparison.

11.2.2 Image processing in Python

Image processing focuses on enhancing and analyzing images to extract
information or improve their quality. Python libraries such as OpenCV,
scikit-image, and PIL (Pillow) are widely used for image processing tasks.

Key concepts regarding image processing in Python:
e Image representation: Images are represented as NumPy arrays.
e Color spaces: RGB, grayscale, and other color spaces.
e Applications: Facial recognition, image classification, and automated

inspection systems.
Several examples are provided in this section to understand the different
aspects of image processing in Python to enhance the understanding of the
topics.
Example 11.6: Image filtering using Gaussian blur
Objective: Read an image, convert it to grayscale, as shown in the Figure
11.6, apply a Gaussian blur, and visualize the results.
import cv2
import matplotlib.pyplot as plt
Step 1: Read an image
img = cv2.imread('imagefile.jpg') # Load the image

Step 2: Convert to grayscale
img gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) #
Convert RGB image to grayscale

Step 3: Apply a Gaussian filter
img filtered = cv2.GaussianBlur(img _gray, (5, 5), @) #
Apply Gaussian blur with kernel size 5x5

Step 4: Display the results
plt.figure(figsize=(10, 5))
plt.subplot(1l, 2, 1)
plt.imshow(img_gray, cmap='gray')
plt.title('Original Image')
plt.subplot(1l, 2, 2)

plt.imshow(img filtered, cmap='gray')
plt.title('Filtered Image')

plt.show()

Original Image Filtered Image

0 0
500 - 500
1000 - 1000 -

0 1000 2000 3000 4000 0 1000 2000 3000 4000

Figure 11.6: Image filtering using Gaussian blur in Python

Explanation:
» Image loading: The cv2.imread function reads an image file.

e Grayscale conversion: The cv2.cvtColor function converts an RGB
image to grayscale.

e Gaussian blur: The cv2.GaussianBlur function applies a Gaussian
blur to image.

e Visualization: The original and filtered images are presented side by
side.

Example 11.7: Edge detection using the Canny method

Objective: Detect edges in a grayscale image using the Canny edge
detection algorithm, as shown in Figure 11.7.

import cv2

import matplotlib.pyplot as plt

Step 1: Read and convert image to grayscale

img = cv2.imread('imagefile.jpg')

img gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) #
Convert to grayscale

Step 2: Detect edges using Canny method
edges = cv2.Canny(img_gray, 100, 200) # Apply Canny

edge detection

Step 3: Display edges

plt.imshow(edges, cmap='gray')

plt.title('Edge Detection')

plt.show()

Note: Edge detection helps identify boundaries and shapes within an image by detecting areas
with sharp intensity changes. It is essential for image analysis tasks such as object recognition,

segmentation, and feature extraction, making images easier to interpret for both humans and
computer vision algorithms.

Edge Detection

500

1000

1500

2000

2500

3000

0 1000 2000 3000 4000

Figure 11.7: Edge detection using the Canny method in Python

Explanation:

e Image loading and conversion: Image is loaded and converted to
grayscale.

e Edge detection: The cv2.Canny function detects edges in an image
using the Canny algorithm.

e Visualization: Detected edges are displayed.

11.2.3 Advanced applications

Python, with its extensive libraries like OpenCV and NumPy, provides an
efficient and flexible framework for performing advanced image processing
tasks, such as object detection. In this section, an example is discussed to
clear the aspect of object detection in an image in Python. A step-by-step
process is discussed in the provided Python code to understand the concept.
The process begins by reading the image and converting it from BGR
(default in OpenCV) to HSV. Then, a binary mask is generated by defining
upper and lower HSV bounds that correspond to the desired object's color
range. The following example demonstrates how simple yet powerful color-
based object detection techniques can be implemented in Python for real-
world applications.

Example 11.8: Object detection in an image.

Objective: Detect objects in an image using color thresholding, as shown in
Figure 11.8.

import cv2

import numpy as np

import matplotlib.pyplot as plt

Step 1: Read the image

img = cv2.imread('imagefile.jpg')

Step 2: Convert to HSV color space
img _hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) #
Convert RGB to HSV

Step 3: Define a color threshold for object detection
lower_bound = np.array([30, 40, 50]) # Lower bound of
HSV values

upper_bound = np.array([80, 255, 255]) # Upper bound of
HSV values

Step 4: Create a binary mask
mask = cv2.inRange(img_hsv, lower_bound, upper_ bound) #
Create a mask based on the threshold

Step 5: Apply the mask to the original image
img_object = cv2.bitwise_and(img, img, mask=mask) #
Apply the mask

Step 6: Display the results

plt

plt.
plt.
plt.
plt.
plt.
plt.
plt.

500 4
1000 A
1500 A
2000 A
ZSOO*F

3000 SR

.figure(figsize=(10, 5))

subplot(1, 2, 1)

imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
title('Original Image')

subplot(1, 2, 2)

imshow(cv2.cvtColor(img _object, cv2.COLOR_BGR2RGB))
title('Detected Object')

show()

Original Image Detected Object

500
1000
1500

Pz

A i 2000
v 1./
)

i) .‘-- g Lat AN T e ‘ :-"]
&5l ' TR A Y] 2500

¥ S bl W i 0 s]
] 1000 2000 3000 4000 0 1000 2000 3000 4000

3000

-

Figure 11.8: Object detection in an image in Python

Explanation:

Color space conversion: Image is converted to HSV color space
regarding better color segmentation.

Thresholding: A binary mask is created based on a specified HSV
range.

Mask application: Mask is applied to the original image to isolate
object.

Visualization: The original image and detected object are displayed.

This section provides a thorough introduction to signal and image processing

in Python. The next section will provide a comparative study of MATLAB
and Python implementations.

11.3 Comparative study of MATLAB and Python
codes

This section provides a comparative insight into MATLAB and Python
implementations for various signal and image processing applications. The
main goal is to highlight similarities and differences between these two
environments. We will cover a few examples across signal processing, image
processing, and their advanced applications.

11.3.1 Signal processing examples

In this section, several examples are discussed to study the comparative
behavior of MATLAB and Python regarding signal processing. Each
example in this section is discussed via MATLAB and Python codes.
Examples such as signal resampling, autocorrelation computation, and chirp
signal generation illustrate how both platforms approach similar problems
using different syntax and libraries. In MATLAB, built-in functions like
resample, xcorr, and chirp provide a direct and user-friendly interface
for these tasks. In Python, equivalent functionality is achieved through the
powerful scipy.signal module, often in combination with numpy and
matplotlib for numerical operations and visualization. This comparison
enables users to understand the strengths and usability of each environment,
which helps them choose the right tool based on their application needs and
familiarity.

Example 11.9: Generate a Sine Wave, as shown in Figures 11.9 and 11.10.
Objective: Generate and plot a sine wave.

MATLAB:

t =0:0.01:1; % Time vector

X = sin(2*pi*5*t); % 5 Hz sine wave
plot(t, x);

title('Sine Wave');

xlabel('Time (s)');

ylabel('Amplitude');

Sine Wave

1 o T T e T T P T T
o8l [

na- .I
0.4

0.2

Amplitude

0.2

-0.4

-0.6 -

0.8

-4 Y L N LN

0 0.1 0.2 0.3 0.4 0.5 0.6
Time (s)

Figure 11.9: Sine wave generation in MATLAB

Python:
import numpy as np
import matplotlib.pyplot as plt

t = np.linspace(®, 1, 100) # Time vector

0.8 0.9

X = np.sin(2 * np.pi * 5 * t) # 5 Hz sine wave

plt.plot(t, x)
plt.title('Sine Wave')
plt.xlabel('Time (s)')
plt.ylabel('Amplitude"’)
plt.show()

Sine Wave

1.00 +

0.75 4

0.50 4

0.25 4

0.00 1

Amplitude

=0.25 1

=0.50 ~

-0.75 1

1.00 4

0.0 0.2 0.9 0.6 0.8 1.0
Time (s)

Figure 11.10: Sine wave generation in Python

Example 11.10: Add noise to a signal

Objective: Add Gaussian noise to a sine wave, as shown in Figures 11.11
and 11.12.

MATLAB:

X = sin(2*pi*5*t) + O.1*randn(size(t)); % Add noise
plot(t, x);

title('Noisy Sine Wave');

Noisy Sine Wave
T

1.5 T T T
1k
05/
0 |-
05
-1
1.5 1 1 1 1 | 1 1 1 |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Figure 11.11: Adding Gaussian noise to a sine wave in MATLAB
Python:

X = np.sin(2 * np.pi * 5 * t) + 0.1 *
np.random.randn(len(t)) # Add noise
plt.plot(t, x)

plt.title('Noisy Sine Wave')
plt.show()

Noisy Sine Wave

1.0 ~

0.5

0.0 1

I L) L) L) 1

0.0 0.2 0.4 0.6 0.8 1.0

Figure 11.12: Adding Gaussian noise to a sine wave in Python

Example 11.11: Compute FFT of a signal

Objective: Compute and plot the FFT of a signal, as shown in Figures 11.13
and 11.14.

MATLAB:

X = fft(x);

f = (0:1ength(X)-1)*(1/(t(2)-t(1)))/length(X);

plot(f, abs(X));

title('FFT of Signal');

FFT of Signal
60 T

50 | | =
30 =

20 | =

0 o N e N AN A e e S N Ny S
0 10 20 30 40 50 60 70 80 90 100

Figure 11.13: FFT of a signal in MATLAB

Python:

X = np.fft.fft(x)

f = np.fft.fftfreq(len(x), t[1] - t[0])
plt.plot(f, np.abs(X))

plt.title('FFT of Signal')

plt.show()

FFT of Signal

20 1

10 4

Q_AM%MMM

—40 =20 0 20 40

Figure 11.14: FFT of a signal in Python

Example 11.12: Apply a low-pass filter

Objective: Apply a Butterworth low-pass filter, as shown in Figures 11.15
and 11.16, to a noisy signal.

MATLAB:
[b, a] = butter(4, 0.1); % 4th-order filter
y = filter(b, a, x);

plot(t, y);
title('Filtered Signal');

0.8 T

Filtered Signal
T T T T
0.6

04

02

0.2

04F

08 ! | | | L | 1 ! 2d !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 11.15: Applying a low-pass filter in MATLAB

Python:

from scipy.signal import butter, filtfilt

b, a = butter(4, 0.1, btype="'low') # 4th-order filter
y = filtfilt(b, a, x)

plt.plot(t, y)

plt.title('Filtered Signal')

plt.show()

Filtered Signal

0.4 -

0.2

0.0 1

=0.2

0.0 0.2 0.4 0.6 0.8 1.0
Figure 11.16: Applying a low-pass filter in Python

Example 11.13: Apply a high-pass filter

Objective: Apply a Butterworth high-pass filter to a noisy signal, as shown
in Figures 11.17 and 11.18.

MATLAB:

[b, a] = butter(4, 0.1, 'high'); % 4th-order filter

y = filter(b, a, x);

plot(t, y);

title('High-Pass Filtered Signal');

High-Pass Filtered Signal
T T T

0.8
N6
0.4

0.2~

-0.2 -
-0.4 -
06

08

1 1 1 1 1 1 1 1 | 1

0 01 0.2 0.3 0.4 0.5 0.8 0.7 0.8 0.9

Figure 11.17: Applying a high-pass filter in MATLAB

Python:

b, a = butter(4, 0.1, btype='high') # 4th-order filter
y = filtfilt(b, a, x)

plt.plot(t, y)

plt.title('High-Pass Filtered Signal')

plt.show()

High-Pass Filtered Signal

0.6 1

0.4 1

0.2 1

0.0 1

0.0 0.2 0.4 0.6 0.8 1.0
Figure 11.18: Applying a high-pass filter in Python

Example 11.14: Apply a band-pass filter

Objective: Apply a butterworth band-pass filter to a noisy signal.
MATLAB:

[b, a] = butter(4, [0.1, ©0.5]); % 4th-order filter
y = filter(b, a, x);

plot(t, y);
title('Band-Pass Filtered Signal');

Band-Pass Filtered Signal
03 | 1 I 1 | I

06

0.4 -

08 1 ! 1 L I ! L 1 ' L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 11.19: Applying a band-pass filter in MATLAB

Python:

b, a = butter(4, [0.1, ©0.5], btype='band') # 4th-order
filter

y = filtfilt(b, a, x)

plt.plot(t, y)

plt.title('Band-Pass Filtered Signal')

plt.show()

Band-Pass Filtered Signal

0.6 1

0.4 4

0.2 1

0.0+

-0.2 1

-0.4

—ﬂ.ﬁ'

0.0 0.2 0.4 0.6 0.8
Figure 11.20: Applying a band-pass filter in Python

Example 11.15: Compute Power Spectral Density (PSD)
Objective: Compute and plot the PSD of a signal.

MATLAB:

[Pxx, f] = pwelch(x, []1, [], [], 1/(t(2)-t(1)));
plot(f, 10*loglo(Pxx));

title('Power Spectral Density');

1.0

i Power Spectral Density
- T T T
15~

20

=25

=35

-40 |-

45 I | 1 | L 1 I
0 5 10 15 20 25 30 35

Figure 11.21: PSD in MATLAB

Python:

from scipy.signal import welch

f, Pxx = welch(x, fs=1/(t[1]-t[@]))
plt.plot(f, 10*np.loglo(Pxx))
plt.title('Power Spectral Density')
plt.show()

40

45

50

Power Spectral Density

_ZG -

=30 4

=50 1

=60 4

0 10 20 30 40 50
Figure 11.22: PSD in Python

Example 11.16: Resample a signal

Objective: Resample a signal to a different sampling rate, as shown in
Figures 11.23 and 11.24.

MATLAB:
y = resample(x, 1, 2); % Downsample by a factor of 2

plot(y);
title('Resampled Signal');

Resampled Signal
T

1.5 T T

05 |

0.5

Mg 1 L 1 1 |
0 10 20 30 40 50

Figure 11.23: Resampling of a signal in MATLAB

Python:

from scipy.signal import resample

y = resample(x, len(x)//2) # Downsample by a factor
2

plt.plot(y)

plt.title('Resampled Signal')

plt.show()

of

60

Resampled Signal

1.0 -

0.5 1

0.0

=0.5 1

=1.0 1

T T T T T

o 10 20 30 40

Figure 11.24: Resampling of a signal in Python

Example 11.17: Compute autocorrelation

Objective: Compute and plot the autocorrelation of a signal.

MATLAB:

[acf, lags] = xcorr(x, 'coeff');
plot(lags, acf);
title('Autocorrelation');

Autocorrelation
1 T T T n T T T

0.8} ; Al " -
06 P I | /] £ N |
0.4 I o [.' £ " i

02+ . [} [[._ | '. - b jil ~ _

0.2

04 \ / \ . B o \ / -

08 . =

A 1 I 1 1 I 1 1 I 1
-100 -80 60 40 -20 0 20 40 60 80 100

Figure 11.25: Autocorrelation in MATLAB

Python:

from scipy.signal import correlate

acf = correlate(x, x, mode='full') / np.max(correlate(x,
X, mode="'full'))

lags = np.arange(-len(x)+1l, len(x))

plt.plot(lags, acf)

plt.title('Autocorrelation")

plt.show()

Autocorrelation

1.00 A1 ﬂ
0.75 -
0.50 -

0.25 1

0.00 -

=0.25 1

050 U U

~0.75 - U U

T T T T

=100 =75 =50 =25 0 25 a0 15 100

Figure 11.26: Autocorrelation in Python

Example 11.18: Generate a chirp signal

Objective: Generate and plot a chirp signal, shown in Figure 11.27.

MATLAB:
t = 9:0.001:1;
x = chirp(t, 0, 1, 100); % Chirp from © Hz to 100 Hz

plot(t, x);
title('Chirp Signal');

Chirp Signal

i

o+ |

0.4

021

-0.2

0.4

SRR AR An

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 11.27: Chirp signal in MATLAB

Python:

from scipy.signal import chirp

t = np.linspace(0, 1, 1000)

x = chirp(t, f0=0, f1=100, tl=1) # Chirp from @ Hz to
100 Hz

plt.plot(t, x)

plt.title('Chirp Signal')

plt.show()

Chirp Signal

1.00 4 F F I
0,75 1

0.50

0.25

0.00 1

—0.25 1

|
o IR

0.0 0.2 0.4 0.5 0.5 10

Figure 11.28: Chirp signal in Python

11.3.2 Image processing examples

In this section, several examples are discussed to study the comparative
behavior of MATLAB and Python regarding image processing. Each
example in this section is discussed via MATLAB and Python codes.
MATLAB offers an intuitive approach with functions like imread,
rgb2gray, imgaussfilt, and edge, which are tailored for academic and
engineering environments. Python, on the other hand, relies on powerful
libraries such as OpenCV and Matplotlib to achieve similar outcomes,
though with more coding flexibility and integration possibilities in modern
Al and data science workflows. For instance, the cv2.cvtColor,
cv2.GaussianBlur, and cv2.Canny functions provide efficient image
transformations in Python. Both tools support visualization and
preprocessing with high accuracy, making them suitable for research and
application development.

Example 11.19: Read and display an image
Objective: Read and display an image.

MATLAB:

img = imread('imagefile.jpg');
imshow(img);

title('Original Image');

Original Image

Figure 11.29: Reading and displaying of an image in MATLAB

Note: In MATLAB, colored image will be generated.

Python:

import cv2

img = cv2.imread(‘image.jpg’)
plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
plt.title('Original Image')

plt.show()

Original Image

0
500 -
1000 -
L1 "
150041 M . ., N .
. l
&
+

0 1000 2000 3000 4000
Figure 11.30: Reading and displaying of an image in Python

Note: In Python, colored image will be generated.

Example 11.20: Convert image to grayscale

Objective: Convert an RGB image to grayscale, as shown in Figures 11.31
and 71.32.

MATLAB:

img gray = rgb2gray(img);
imshow(img gray);
title('Grayscale Image');

Grayscale Image

Figure 11.31: Converting an RGB image to grayscale in MATLAB

Python:

img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
plt.imshow(img_gray, cmap='gray')
plt.title('Grayscale Image')

plt.show()

Grayscale Image

500 A

1000 A

15001 - S R

0 1000 2000 3000 4000
Figure 11.32: Converting an RGB image to grayscale in Python

Example 11.21: Apply Gaussian blur

Objective: Apply Gaussian blur to an image, as shown in Figures 11.33 and
11.34.

MATLAB:
img blur = imgaussfilt(img_gray, 2);
imshow(img_blur);

title('Gaussian Blur');

Gaussian Blur

Figure 11.33: Gaussian blur in MATLAB

Python:

img blur = cv2.GaussianBlur(img_gray, (5, 5), 0)
plt.imshow(img blur, cmap='gray')
plt.title('Gaussian Blur')

plt.show()

Gaussian Blur

500 -
1000 -

15001 i

2000 -

2500

0 1000 2000 3000 4000
Figure 11.34: Gaussian blur in Python

Example 11.22: Detect edges using Canny (See Figures 11.35 and 11.36)
Objective: Detect edges in an image using the Canny method.
MATLAB:

edges = edge(img_gray, 'Canny');

imshow(edges);

title('Edge Detection');

Edge Detection

Figure 11.35: Detection of edges in an image using the Canny method in MATLAB

Python:

edges = cv2.Canny(img_gray, 100, 200)
plt.imshow(edges, cmap='gray"')
plt.title('Edge Detection')

plt.show()

Edge Detection

500

1000

1500

2000

2500

3000

0 1000 2000 3000 4000
Figure 11.36: Detection of edges in an image using the Canny method in Python

Example 11.23: Apply the histogram equalization (See Figures 11.37 and
11.38)

Objective: Apply histogram equalization to an image.
MATLAB:

img eq = histeq(img_gray);
imshow(img_eq);

title('Histogram Equalization');

Histogram Equalization

Figure 11.37: Histogram equalization in MATLAB

Python:

img eq = cv2.equalizeHist(img gray)
plt.imshow(img_eq, cmap='gray')
plt.title('Histogram Equalization')
plt.show()

Histogram Equalization

0 1000 2000 3000 4000

Figure 11.38: Histogram equalization in Python

11.3.3 Advanced applications

Advanced applications in image processing often involve techniques like
object detection, segmentation, and feature extraction. This section provides
a comparative example of object detection based on color thresholding using
both MATLAB and Python. MATLAB leverages the rgb2hsv function and
logical indexing to isolate regions within a specific hue range, followed by
masking the original image using bsxfun. Python achieves the same using
OpenCV’s cv2.cvtColor and <cv2.inRange, followed by
cv2.bitwise_and to apply the mask. These techniques are commonly
used in real-world applications such as medical imaging, traffic monitoring,
robotics, and industrial inspection. The example highlights how each
environment can be used to perform complex tasks with relative ease,
enabling users to make informed choices based on their workflow and
domain requirements.

Example 11.24: Object detection using color thresholding

Objective: Detect objects in an image based on color, as shown in Figures
11.39 and 11.40.

MATLAB:

img_hsv = rgb2hsv(img);

mask = (img_hsv(:,:,1) >= 0.1) & (img_hsv(:,:,1) <=
0.5);

img object = bsxfun(@times, img, cast(mask, 'like’,
img));

imshow(img_object);

title('Detected Object');

Detected Object

Figure 11.39: Object detection using color thresholding in MATLAB

Python:

img hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(img_hsv, (30, 40, 50), (80, 255,
255))

img object = cv2.bitwise and(img, img, mask=mask)
plt.imshow(cv2.cvtColor(img _object, cv2.COLOR_BGR2RGB))
plt.title('Detected Object')

plt.show()

Detected Object

500

1000

1500

2000

2500

3000

0 1000 2000 3000 4000

Figure 11.40: Object detection using color thresholding in Python

This section offers examples comparing MATLAB and Python for signal and
image processing tasks. Each example includes code snippets and
explanations, which enable readers to understand similarities and differences
between these two environments.

Conclusion

In this chapter, we explored techniques utilized in signal processing and
image processing within MATLAB and Python environments, highlighting
their strengths and applications. MATLAB excels in speedy prototyping and

mathematical modeling, which offers user-friendly toolboxes for signal and
image analysis. Python provides flexibility, scalability, and seamless
integration with machine learning and data science frameworks. Through
comparative examples, we demonstrated how these platforms may be
utilized for tasks such as filtering, Fourier transforms, noise reduction, edge
detection, object recognition, and deep learning-based image classification.
This chapter focused on the fact that MATLAB and Python are
complementary tools, and the choice between them depends on project
requirements and the availability of libraries. Via mastering these
environments, readers can effectively tackle challenges in fields like
telecommunications, computer vision, and medical imaging. This chapter
serves as a complete guide for students, researchers, and professionals,
providing a robust foundation for further exploration in signal and image
processing. The next chapter will provide some insights into the possible
case studies in MATLAB and Python for practice purposes for the readers.

Exercises

Signal processing — Conceptual understanding (MATLAB and Python)
1. What is the purpose of signal processing in communication systems?
. Explain the difference between analog and digital signals.
. What is the Nyquist sampling theorem and why is it important?
. Define and differentiate between FIR and IIR filters.
. What is aliasing in signal processing, and how can it be prevented?

.How do you compute the FFT of a signal in MATLAB? Give an
example.

AN L B~ W

7. Describe the role of the window function in spectral analysis.
8. What does a spectrogram represent in audio signal processing?
9. How does autocorrelation help in analyzing signals?
10. Explain the concept of convolution and its use in filtering.
Signal processing — MATLAB coding practice
1. Write MATLAB code to generate and plot a sine wave of 10 Hz.
2. How do you apply a low-pass filter to a signal in MATLAB?

. Use xcorr to compute and plot the autocorrelation of a signal.
. Write a MATLAB program to downsample a signal by a factor of 2.
. Generate a chirp signal using MATLAB and plot it.

AN L B~ W

. Create a noisy sine wave in MATLAB and apply a moving average
filter.

7. Plot the frequency spectrum of a signal using FFT in MATLAB.

8. Use filter in MATLAB to remove high-frequency components from a
signal.

9. Write MATLAB code to compute the energy of a discrete signal.
10. Apply a bandpass filter to an audio file in MATLAB and plot the result.
Signal processing — Python coding practice
1. Write Python code to read an audio signal using scipy.io.wavfile.
. Use matplotlib to plot the waveform and its FFT.
. Implement a Butterworth low-pass filter using scipy.signal.butter.
. Write Python code to compute and plot the autocorrelation of a signal.
. Resample a signal in Python using scipy.signal.resample.
. Create and visualize a spectrogram using scipy.signal.spectrogram.
. Generate a chirp signal in Python and visualize it.
. Apply a moving average filter to smooth a noisy signal in Python.

O 0 3 O D B~ WL DN

. How can you normalize a signal in Python using NumPy?
10. Use scipy.signal.convolve to filter a noisy ECG signal.
Image processing — Conceptual understanding (MATLAB and Python)
. What is the difference between grayscale and binary images?
. Explain HSV and RGB color spaces. When is HSV preferred?
. What is histogram equalization, and why is it used?
. Define convolution in the context of image filtering.
. What is the purpose of edge detection in image processing?
. Describe morphological operations: erosion and dilation.
. How does Gaussian blur improve image quality?
. What is thresholding, and how is it used in object detection?

O 00 3 O D K LW DN =

. What are the main steps involved in the Canny edge detection method?

10. Compare and contrast MATLAB and Python for image processing
workflows.

Image processing — MATLAB coding practice
1. Read and display an image in MATLAB. Convert it to grayscale.
2. Apply Gaussian blur using imgaussfilt and visualize the result.
3. Perform edge detection using the Canny method in MATLAB.
4. Write MATLAB code to detect objects using HSV thresholding.
5. Use histeq to enhance the contrast of a grayscale image.

Image processing — Python coding practice
1. Read an image using OpenCV and convert it to HSV.
2. Apply a color threshold using cv2.inRange and mask the object.
3. Perform histogram equalization using cv2.equalizeHist.
4. Detect edges using the Canny algorithm in OpenCV.

5. Apply the Gaussian blur using cv2.GaussianBlur and visualize the
output using matplotlib.

Join our Discord space

Join our Discord workspace for latest updates, offers, tech happenings
around the world, new releases, and sessions with the authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/

CHAPTER 12

Case Studies in MATLAB and
Python

Introduction

In this chapter, case studies are provided in MATLAB and Python. This
content is provided chapter-wise for the better understanding of the
concepts. Readers will gain a full insight of the discussed content in the
book via practicing these case studies.

Structure

This chapter covers the following topic:
e Chapter-wise exercises

Objectives

The objectives of this chapter are to provide practical, real-world case
studies that illustrate the application of MATLAB and Python to solve
complex problems across diverse fields such as engineering, finance, signal
processing, and data science. Through hands-on examples, readers will
learn how to implement numerical computations, data analysis, and

visualization techniques in both environments which enables them to
compare their strengths and limitations. The chapter aims to develop
problem-solving skills by guiding readers through industry-relevant
scenarios, including signal filtering, image processing, financial modeling,
and statistical analysis. By working through these case studies, readers will
gain proficiency in translating theoretical concepts into functional code,
optimizing workflows, and selecting the appropriate tool (MATLAB or
Python) for specific tasks. Additionally, the chapter emphasizes best
practices in algorithm development, debugging, and performance
evaluation, equipping readers with the expertise to tackle real-world
challenges efficiently.

Chapter-wise exercises

Chapter 1, Introduction to MATLAB and Python exercises:

e MATLAB overview: Describe the main applications of MATLAB in
scientific computing and engineering.

e MATLAB environment: Explain the functions of MATLAB's
toolboxes, workspace, and Command Window.

e Basic syntax: Create a MATLAB script to carry out addition,
subtraction, multiplication, and division, among other fundamental
arithmetic operations.

e Python introduction: Examine Python's readability and adaptability in
comparison to other programming languages.

e Python environment setup: Describe how to install Python and
configure an IDE such as Jupyter Notebook or PyCharm.

e Basic syntax: Create a Python program that prints "Hello, World!" and
carries out simple math operations.

e MATLAB versus Python: Compare the basic syntax of MATLAB and
Python for arithmetic operations.

« MATLAB toolboxes: Research and list three MATLAB toolboxes and
their applications.

e Python libraries: List the three Python libraries that are necessary for
scientific computing, along with their applications.

MATLAB Command Window: Demonstrate how to use the
Command Window to execute simple commands.

Python REPL: Describe the Python REPL's function and provide a
basic example to illustrate how to utilize it.

MATLAB Workspace: Describe how to view and manage variables in
the MATLAB Workspace.

Python variables: Write a Python script to declare and print variables
of different data types.

MATLAB scripts: Create a MATLAB script to calculate the area of a
circle given its radius.

Python scripts: Write a Python script to calculate the factorial of a
number.

MATLAB help function: Demonstrate how to use the help function in
MATLAB to get information about a specific function.

Python documentation: Explain how to access and use Python
documentation for a given library or function.

MATLAB path management: Describe how to add a directory to the
MATLAB path and why it is important.

Python virtual environments: Explain the purpose of virtual
environments in Python and how to create one.

MATLAB live scripts: Compare MATLAB live scripts with regular
scripts and provide an example of a live script.

Python Notebooks: Describe the advantages of using Jupyter
Notebooks for Python programming.

MATLAB debugging: Explain the basic debugging tools available in
MATLAB and how to use them.

Python debugging: Describe the use of the pdb module for
debugging Python code.

MATLAB plotting: Write a MATLAB script to plot a simple sine
wave.

Python plotting: Use Matplotlib to plot a sine wave in Python.

Chapter 2, MATLAB and Python Variables and Data Types

MATLAB variables: To define and initialize variables of various data

kinds, write a MATLAB script.

Python variables: To define and initialize variables of various data
types, write a Python script.

MATLAB arrays: To create a 3X3 matrix and carry out element-wise
multiplication, write a MATLAB script.

Python lists: Write a Python script to create a list of integers and
perform basic operations like appending and slicing.

MATLAB strings: Demonstrate how to concatenate two strings in
MATLAB.

Python strings: Write a Python script to reverse a string and check if it
is a palindrome.

MATLAB cell arrays: Create a MATLAB cell array to store different
data types and access its elements.

Python tuples: Write a Python script to create a tuple and demonstrate
its immutability.

MATLAB structures: Create a MATLAB structure to store student
information (name, age, grade) and access its fields.

Python dictionaries: Create a dictionary using a Python script to store
and retrieve student data.

MATLAB data types: List the different data types supported by
MATLAB and provide an example of each.

Python data types: List the different data types supported by Python
and provide an example of each.

MATLAB matrix operations: Write a MATLAB script to perform
matrix multiplication and transposition.

Python list operations: Write a Python script to perform list operations
like sorting, reversing, and finding the maximum value.

MATLAB string manipulation: Write a MATLAB script to find the
length of a string and extract a substring.

Python string manipulation: Write a Python script to count the
occurrences of a specific character in a string.

MATLAB cell array operations: Write a MATLAB script to
concatenate two cell arrays and access specific elements.

Python dictionary operations: Write a Python script to add, update,
and delete key-value pairs in a dictionary.

MATLAB structure operations: Write a MATLAB script to add a
new field to an existing structure and update its value.

Python tuple operations: Write a Python script to unpack a tuple and
demonstrate its use in function return values.

MATLAB data type conversion: Write a MATLAB script to convert a
numeric array to a string array.

Python data type conversion: Write a Python script to convert a list of
integers to a list of strings.

MATLAB array indexing: Write a MATLAB script to access specific
elements of a 2D array using indexing.

Python list indexing: Write a Python script to access specific elements
of a list using negative indexing.

MATLAB versus Python data types: Compare the data types
available in MATLAB and Python, highlighting their similarities and
differences.

Chapter 3, Basic Operations in MATLAB and Python

MATLAB arithmetic operations: Write a MATLAB script to perform
basic arithmetic operations on two matrices.

Python arithmetic operations: Write a Python script to perform basic
arithmetic operations on two lists of numbers.

MATLAB matrix operations: Write a MATLAB script to perform
matrix multiplication and element-wise division.

Python list operations: Write a Python script to perform element-wise
addition and multiplication on two lists.

MATLAB logical operations: Write a MATLAB script to perform
logical operations (AND, OR, NOT) on two arrays.

Python Logical Operations: Write a Python script to perform logical
operations (AND, OR, NOT) on two lists of Boolean values.

MATLAB string manipulation: Write a MATLAB script to
concatenate two strings and find the length of the resulting string.

Python string manipulation: Write a Python script to concatenate two

strings and find the number of words in the resulting string.
MATLAB built-in functions: Write a MATLAB script to use built-in
functions like sum, mean, and max on an array.

Python built-in functions: Write a Python script to use built-in
functions like sum, min, and 1len on a list.

MATLAB matrix functions: Write a MATLAB script to find the
determinant and inverse of a matrix.

Python list functions: Write a Python script to find the sum, average,
and maximum value in a list.

MATLAB array indexing: Write a MATLAB script to access specific
elements of a 2D array using logical indexing.

Python list indexing: Write a Python script to access specific elements
of a list using slicing.

MATLAB string functions: Write a MATLAB script to find and
replace a substring within a string.

Python string functions: Write a Python script to split a string into a
list of words and join them back into a single string.

MATLAB element-wise operations: Write a MATLAB script to
perform element-wise multiplication and division on two arrays.
Python element-wise operations: Write a Python script to perform
element-wise addition and subtraction on two lists.

MATLAB matrix transposition: Write a MATLAB script to transpose
a matrix and verify the result.

Python list transposition: Write a Python script to transpose a list of
lists (matrix) and verify the result.

MATLAB logical indexing: Write a MATLAB script to extract
elements from an array that satisfy a specific condition.

Python list comprehension: Write a Python script to create a new list
containing only the even numbers from an existing list.

MATLAB string comparison: Write a MATLAB script to compare
two strings and determine if they are equal.

Python string comparison: Write a Python script to compare two
strings and determine if one is a substring of the other.

MATLAB versus Python operations: Compare the basic operations
(arithmetic, logical, and string) in MATLAB and Python, highlighting
their similarities and differences.

Chapter 4, Control Flow and Structures in MATLAB and Python

MATLAB conditional statements: Write a MATLAB script to check
if a number is positive, negative, or zero using if-else statements.

Python conditional statements: Write a Python script to check if a
number is even or odd using if-elif-else statements.

MATLAB for loops: Write a MATLAB script to print the first 10
natural numbers using a for loop.

Python for loops: Write a Python script to print the first 10 natural
numbers using a for loop.

MATLAB while loops: Write a MATLAB script to find the factorial of
a number using a while loop.

Python while loops: Write a Python script to find the factorial of a
number using a while loop.

MATLAB nested loops: Write a MATLAB script to print a
multiplication table using nested for loops.

Python nested loops: Write a Python script to print a multiplication
table using nested for loops.

MATLAB switch-case: Write a MATLAB script to implement a
simple calculator using switch-case statements.

Python match-case: Write a Python script to implement a simple
calculator using match-case statements (Python 3.10+).

MATLAB break statement: Write a MATLAB script to demonstrate
the use of the break statement in a loop.

Python break statement: Write a Python script to demonstrate the use
of the break statement in a loop.

MATLAB continue statement: Write a MATLAB script to
demonstrate the use of the continue statement in a loop.

Python continue statement: Write a Python script to demonstrate the
use of the continue statement in a loop.

MATLAB error handling: Write a MATLAB script to handle division

by zero using try-catch blocks.

Python error handling: Write a Python script to handle division by
zero using try-except blocks.

MATLAB vectorized operations: Write a MATLAB script to perform
element-wise operations on an array without using loops.

Python list comprehensions: Write a Python script to create a list of
squares of the first 10 natural numbers using list comprehension.
MATLAB loop optimization: Write a MATLAB script to compare the
performance of a loop-based operation with a vectorized operation.
Python loop optimization: Write a Python script to compare the
performance of a loop-based operation with a list comprehension.
MATLAB conditional expressions: Write a MATLAB script to use a
ternary conditional expression to assign a value based on a condition.
Python conditional expressions: Write a Python script to use a ternary
conditional expression to assign a value based on a condition.
MATLAB nested if-else: Write a MATLAB script to implement a
nested if-else structure to check multiple conditions.

Python nested if-elif-else: Write a Python script to implement a
nested if-elif-else structure to check multiple conditions.

MATLAB versus Python control flow: Compare the control flow
structures (conditional statements, loops) in MATLAB and Python,
highlighting their similarities and differences.

Chapter 5, Functions and Scripts in MATLAB and Python

MATLAB functions: Write a MATLAB function to calculate the area
of a rectangle given its length and width.

Python functions: Write a Python function to calculate the area of a
rectangle given its length and width.

MATLAB scripts: Write a MATLAB script to call the rectangle area
function and display the result.

Python scripts: Write a Python script to call the rectangle area
function and display the result.

MATLAB anonymous functions: Write a MATLAB script to define
an anonymous function that calculates the square of a number.

Python lambda functions: Write a Python script to define a lambda
function that calculates the square of a number.

MATLAB function handles: Write a MATLAB script to create a
function handle and use it to call a function.

Python function objects: Write a Python script to create a function
object and use it to call a function.

MATLAB nested functions: Write a MATLAB script to define a
nested function and demonstrate its use.

Python nested functions: Write a Python script to define a nested
function and demonstrate its use.

MATLAB variable scope: Write a MATLAB script to demonstrate the
scope of variables within and outside a function.

Python variable scope: Write a Python script to demonstrate the scope
of variables within and outside a function.

MATLAB recursive functions: Write a MATLAB script to implement
a recursive function to calculate the factorial of a number.

Python recursive functions: Write a Python script to implement a
recursive function to calculate the factorial of a number.

MATLAB function input/output: Write a MATLAB script to define a
function that takes multiple inputs and returns multiple outputs.

Python function input/output: Write a Python script to define a
function that takes multiple inputs and returns multiple outputs.
MATLAB script organization: Write a MATLAB script to organize
multiple functions and scripts into a single project.

Python script organization: Write a Python script to organize multiple
functions and scripts into a single project.

MATLAB function documentation: Write a MATLAB script to add
documentation to a function using comments.

Python function documentation: Write a Python script to add
documentation to a function using docstrings.

MATLAB function overloading: Write a MATLAB script to
demonstrate function overloading by defining multiple functions with
the same name but different inputs.

Python function overloading: Write a Python script to demonstrate
function overloading using default arguments and variable-length
arguments.

MATLAB function debugging: Write a MATLAB script to debug a
function using breakpoints and the MATLAB debugger.

Python function debugging: Write a Python script to debug a function
using the pdb module.

MATLAB vs. Python functions: Compare the function definitions,
usage, and features in MATLAB and Python, highlighting their
similarities and differences.

Chapter 6, Data Handling in MATLAB and Python

MATLAB file reading: Write a MATLAB script to read data from a
text file and display it in the Command Window.

Python file reading: Write a Python script to read data from a text file
and print it to the console.

MATLAB file writing: Write a MATLAB script to write data to a text
file.

Python file writing: Write a Python script to write data to a text file.
MATLAB CSV import: Write a MATLAB script to import data from
a CSV file and store it in a matrix.

Python CSV import: Write a Python script to import data from a CSV
file using the csv module.

MATLAB CSYV export: Write a MATLAB script to export a matrix to
a CSV file.

Python CSV export: Write a Python script to export a list of lists to a
CSV file using the csv module.

MATLAB Excel import: Write a MATLAB script to import data from
an Excel file using readtable.

Python Excel import: Write a Python script to import data from an
Excel file using pandas.

MATLAB Excel export: Write a MATLAB script to export a table to
an Excel file using writetable.

Python Excel export: Write a Python script to export a DataFrame to

an Excel file using pandas.

e MATLAB binary files: Write a MATLAB script to read and write data
to a binary file.

e Python binary files: Write a Python script to read and write data to a
binary file.

e MATLAB data parsing: Write a MATLAB script to parse a structured
text file and extract specific data.

e Python data parsing: Write a Python script to parse a structured text
file and extract specific data.

e MATLAB data filtering: Write a MATLAB script to filter data based
on specific criteria and save the filtered data to a new file.

e Python data filtering: Write a Python script to filter data based on
specific criteria and save the filtered data to a new file.

e MATLAB data transformation: Write a MATLAB script to transform
data (e.g., scaling, normalization) and save the transformed data to a
new file.

e Python data transformation: Write a Python script to transform data

(e.g., scaling, normalization) and save the transformed data to a new
file.

e MATLAB data visualization: Write a MATLAB script to visualize
data from a file using basic plotting functions.

e Python data visualization: Write a Python script to visualize data
from a file using matplotlib.

e MATLAB data aggregation: Write a MATLAB script to aggregate
data (e.g., sum, average) from a file and display the results.

e Python data aggregation: Write a Python script to aggregate data
(e.g., sum, average) from a file and display the results.

e MATLAB versus Python data handling: Compare the data handling
capabilities (file I/O, data parsing, filtering) in MATLAB and Python,
highlighting their similarities and differences.

Chapter 7, Data handling in MATLAB and Python

e MATLAB JSON import: Write a MATLAB script to import data from

a JSON file using jsondecode.

Python JSON import: Write a Python script to import data from a
JSON file using the json module.

MATLAB JSON export: Write a MATLAB script to export data to a
JSON file using jsonencode.

Python JSON export: Write a Python script to export data to a JSON
file using the json module.

MATLAB XML import: Write a MATLAB script to import data from
an XML file using xmlread.

Python XML import: Write a Python script to import data from an
XML file using xml.etree.ElementTree.

MATLAB XML export: Write a MATLAB script to export data to an
XML file using xmlwrite.

Python XML export: Write a Python script to export data to an XML
file using xml.etree.ElementTree.

MATLAB database connectivity: Write a MATLAB script to connect
to a SQL database and retrieve data using database.

Python database connectivity: Write a Python script to connect to a
SQL database and retrieve data using sqlite3.

MATLAB data cleaning: Write a MATLAB script to clean data (e.g.,
handle missing values, remove duplicates) from a dataset.

Python data cleaning: Write a Python script to clean data (e.g., handle
missing values, remove duplicates) from a dataset using pandas.
MATLAB data merging: Write a MATLAB script to merge two
datasets based on a common key.

Python data merging: Write a Python script to merge two datasets
based on a common key using pandas.

MATLAB data reshaping: Write a MATLAB script to reshape data
(e.g., wide to long format) using reshape.

Python data reshaping: Write a Python script to reshape data (e.g.,
wide to long format) using pandas.

MATLAB data sampling: Write a MATLAB script to randomly
sample data from a dataset.

Python data sampling: Write a Python script to randomly sample data
from a dataset using pandas.

MATLAB data grouping: Write a MATLAB script to group data
based on a specific column and calculate summary statistics.

Python data grouping: Write a Python script to group data based on a
specific column and calculate summary statistics using pandas.

MATLAB data pivoting: Write a MATLAB script to pivot data (e.g.,
create a pivot table) using unstack.

Python data pivoting: Write a Python script to pivot data (e.g., create
a pivot table) using pandas.

MATLAB data interpolation: Write a MATLAB script to interpolate
missing data in a dataset.

Python data interpolation: Write a Python script to interpolate
missing data in a dataset using pandas.

MATLAB versus Python advanced data handling: Compare the
advanced data handling capabilities (JSON, XML, databases, data
cleaning, merging, reshaping) in MATLAB and Python, highlighting
their similarities and differences.

Chapter 8, Plotting and Visualization in MATLAB and Python

MATLAB basic plotting: Write a MATLAB script to plot a sine wave
and a cosine wave on the same graph.

Python basic plotting: Write a Python script to plot a sine wave and a
cosine wave on the same graph using matplotlib.

MATLAB customizing plots: Write a MATLAB script to customize a
plot with titles, labels, legends, and grid lines.

Python customizing plots: Write a Python script to customize a plot
with titles, labels, legends, and grid lines using matplotlib.
MATLAB subplots: Write a MATLAB script to create subplots of
sine, cosine, and tangent waves.

Python subplots: Write a Python script to create subplots of sine,
cosine, and tangent waves using matplotlib.

MATLAB bar charts: Write a MATLAB script to create a bar chart
comparing the sales of different products.

Python bar charts: Write a Python script to create a bar chart
comparing the sales of different products using matplotlib.

MATLAB histograms: Write a MATLAB script to create a histogram
of a dataset showing the distribution of values.

Python histograms: Write a Python script to create a histogram of a
dataset showing the distribution of values using matplotlib.

MATLAB scatter plots: Write a MATLAB script to create a scatter
plot of two variables and add a trend line.

Python scatter plots: Write a Python script to create a scatter plot of
two variables and add a trend line using matplotlib.

MATLAB 3D plotting: Write a MATLAB script to create a 3D surface
plot of a mathematical function.

Python 3D plotting: Write a Python script to create a 3D surface plot
of a mathematical function using matplotlib.

MATLAB polar plots: Write a MATLAB script to create a polar plot
of a mathematical function.

Python polar plots: Write a Python script to create a polar plot of a
mathematical function using matplotlib.

MATLAB heatmaps: Write a MATLAB script to create a heatmap of
a correlation matrix.

Python heatmaps: Write a Python script to create a heatmap of a
correlation matrix using seaborn.

MATLAB annotations: Write a MATLAB script to add annotations
(text, arrows) to a plot.

Python annotations: Write a Python script to add annotations (text,
arrows) to a plot using matplotlib.

MATLAB plot export: Write a MATLAB script to export a plot as an
image file (e.g., PNG, JPEG).

Python plot export: Write a Python script to export a plot as an image
file (e.g., PNG, JPEG) using matplotlib.

MATLAB interactive plots: Write a MATLAB script to create an
interactive plot using plotly.

Python interactive plots: Write a Python script to create an interactive
plot using plotly.

MATLAB versus Python plotting: Compare the plotting and
visualization capabilities in MATLAB and Python, highlighting their
similarities and differences.

Chapter 9, Plotting and Visualization in MATLAB and Python

MATLAB advanced plotting: Write a MATLAB script to create a
contour plot of a 2D function.

Python advanced plotting: Write a Python script to create a contour
plot of a 2D function using matplotlib.

MATLAB 3D bar charts: Write a MATLAB script to create a 3D bar
chart comparing the sales of different products over time.

Python 3D bar charts: Write a Python script to create a 3D bar chart
comparing the sales of different products over time
using matplotlib.

MATLAB surface plots: Write a MATLAB script to create a surface
plot of a 3D function with custom colormaps.

Python surface plots: Write a Python script to create a surface plot of
a 3D function with custom colormaps using matplotlib.

MATLAB stream plots: Write a MATLAB script to create a stream
plot of a vector field.

Python stream plots: Write a Python script to create a stream plot of a
vector field using matplotlib.

MATLAB pie charts: Write a MATLAB script to create a pie chart
showing the market share of different products.

Python pie charts: Write a Python script to create a pie chart showing
the market share of different products using matplotlib.

MATLAB box plots: Write a MATLAB script to create a box plot
showing the distribution of data across different categories.

Python box plots: Write a Python script to create a box plot showing
the distribution of data across different categories using seaborn.

MATLAB violin plots: Write a MATLAB script to create a violin plot
showing the distribution of data across different categories.

e Python violin plots: Write a Python script to create a violin plot
showing the distribution of data across different categories
using seaborn.

e MATLAB pair plots: Write a MATLAB script to create a pair plot
showing the relationships between multiple variables.

e Python pair plots: Write a Python script to create a pair plot showing
the relationships between multiple variables using seaborn.

e MATLAB animated plots: Write a MATLAB script to create an
animated plot of a sine wave.

e Python animated plots: Write a Python script to create an animated
plot of a sine wave using matplotlib.animation.

e MATLAB geographic plots: Write a MATLAB script to create a
geographic plot showing the locations of different cities.

e Python geographic plots: Write a Python script to create a geographic
plot showing the locations of different cities using basemap.

e MATLAB custom colormaps: Write a MATLAB script to create a
custom colormap and apply it to a surface plot.

e Python custom colormaps: Write a Python script to create a custom
colormap and apply it to a surface plot using matplotlib.

e MATLAB Plotly integration: Write a MATLAB script to create an
interactive plot using Plotly.

e Python Plotly integration: Write a Python script to create an
interactive plot using Plotly.

e MATLAB versus Python advanced visualization: Compare the
advanced visualization capabilities (3D plots, contour plots, geographic
plots, animations) in MATLAB and Python, highlighting their
similarities and differences.

Chapter 10, Data Manipulation and Statistical Analysis

e MATLAB data manipulation: Write a MATLAB script to perform
basic data manipulation (e.g., filtering, sorting) on a dataset.

e Python data manipulation: Write a Python script to perform basic
data manipulation (e.g., filtering, sorting) on a dataset using pandas.

e MATLAB statistical functions: Write a MATLAB script to calculate

the mean, median, and standard deviation of a dataset.

Python statistical functions: Write a Python script to calculate the
mean, median, and standard deviation of a dataset using numpy.
MATLAB data aggregation: Write a MATLAB script to aggregate
data (e.g., sum, average) by group.

Python data aggregation: Write a Python script to aggregate data
(e.g., sum, average) by group using pandas.

MATLAB data reshaping: Write a MATLAB script to reshape data
(e.g., wide to long format) using reshape.

Python data reshaping: Write a Python script to reshape data (e.g.,
wide to long format) using pandas.

MATLAB data merging: Write a MATLAB script to merge two
datasets based on a common key.

Python data merging: Write a Python script to merge two datasets
based on a common key using pandas.

MATLAB data pivoting: Write a MATLAB script to pivot data (e.g.,
create a pivot table) using unstack.

Python data pivoting: Write a Python script to pivot data (e.g., create
a pivot table) using pandas.

MATLAB data sampling: Write a MATLAB script to randomly
sample data from a dataset.

Python data sampling: Write a Python script to randomly sample data
from a dataset using pandas.

MATLAB data grouping: Write a MATLAB script to group data
based on a specific column and calculate summary statistics.

Python data grouping: Write a Python script to group data based on a
specific column and calculate summary statistics using pandas.
MATLAB data interpolation: Write a MATLAB script to interpolate
missing data in a dataset.

Python data interpolation: Write a Python script to interpolate
missing data in a dataset using pandas.

MATLAB data normalization: Write a MATLAB script to normalize

data (e.g., min-max scaling) in a dataset.

Python data normalization: Write a Python script to normalize data
(e.g., min-max scaling) in a dataset using pandas.

MATLAB data transformation: Write a MATLAB script to transform
data (e.g., log transformation) in a dataset.

Python data transformation: Write a Python script to transform data
(e.g., log transformation) in a dataset using pandas.

MATLAB data visualization: Write a MATLAB script to visualize the
distribution of data using histograms and box plots.

Python data visualization: Write a Python script to visualize the
distribution of data using histograms and box plots using seaborn.

MATLAB vs Python data manipulation: Compare the data
manipulation and statistical analysis capabilities in MATLAB and
Python, highlighting their similarities and differences.

Chapter 11, Signal and Image Processing

MATLAB signal processing: Write a MATLAB script to perform
Fourier Transform on a signal and plot the frequency spectrum.

Python signal processing: Write a Python script to perform Fourier
Transform on a signal and plot the frequency spectrum
using numpy and matplotlib.

MATLAB filter design: Write a MATLAB script to design a low-pass
filter and apply it to a signal.

Python filter design: Write a Python script to design a low-pass filter
and apply it to a signal using scipy.

MATLAB audio processing: Write a MATLAB script to read an audio
file, apply a filter, and play the filtered audio.

Python audio processing: Write a Python script to read an audio file,
apply a filter, and play the filtered audio using scipy and pydub.
MATLAB image processing: Write a MATLAB script to read an
image, convert it to grayscale, and display the result.

Python image processing: Write a Python script to read an image,
convert it to grayscale, and display the result using opencv.

MATLAB image filtering: Write a MATLAB script to apply a

Gaussian blur to an image and display the result.

Python image filtering: Write a Python script to apply a Gaussian blur
to an image and display the result using opencv.

MATLAB edge detection: Write a MATLAB script to perform edge
detection on an image using the Canny method.

Python edge detection: Write a Python script to perform edge
detection on an image using the Canny method with opencv.
MATLAB image segmentation: Write a MATLAB script to perform
image segmentation using thresholding.

Python image segmentation: Write a Python script to perform image
segmentation using thresholding with opencv.

MATLAB object detection: Write a MATLAB script to detect objects
in an image using template matching.

Python object detection: Write a Python script to detect objects in an
image using template matching with opencv.

MATLAB image restoration: Write a MATLAB script to restore a
noisy image using a median filter.

Python image restoration: Write a Python script to restore a noisy
image using a median filter with opencv.

MATLAB image compression: Write a MATLAB script to compress
an image using JPEG compression.

Python image compression: Write a Python script to compress an
image using JPEG compression with opencv.

MATLAB image analysis: Write a MATLAB script to analyze an
image and extract features (e.g., area, perimeter).

Python image analysis: Write a Python script to analyze an image and
extract features (e.g., area, perimeter) using opencv.

MATLAB video processing: Write a MATLAB script to read a video
file, apply a filter, and save the filtered video.

Python video processing: Write a Python script to read a video file,
apply a filter, and save the filtered video using opencv.

MATLAB vs. Python signal and image processing: Compare the
signal and image processing capabilities in MATLAB and Python,

highlighting their similarities and differences.

Conclusion

This chapter explored practical case studies demonstrating the real-world
applications of MATLAB and Python across engineering, finance, signal
processing, and data science. Readers learned how these tools can be used
to solve complex problems, from financial modeling and statistical analysis
to image processing and signal filtering. Through hands-on examples, the
chapter highlighted key differences in syntax, performance, and workflow
between MATLAB and Python, helping readers determine the best tool for
specific tasks.

Key topics covered included numerical computations, data visualization,
algorithm optimization, and debugging techniques. The case studies
reinforced essential concepts such as matrix operations, control flow,
function handling, and file I/O, while also introducing advanced techniques
like machine learning integration and real-time signal processing. By
working through these examples, readers gained experience in translating
theoretical knowledge into practical solutions, improving their problem-
solving skills in technical computing.

Ultimately, this chapter bridged the gap between academic concepts and
industry applications, preparing readers to implement MATLAB and Python
in research, automation, and data-driven decision-making. The comparative
approach provided insights into selecting the right tool for efficiency,
scalability, and domain-specific requirements, equipping readers with
versatile programming skills for real-world challenges.

Join our Discord space

Join our Discord workspace for latest updates, offers, tech happenings
around the world, new releases, and sessions with the authors:

https://discord.bpbonline.com

https://discord.bpbonline.com/

Symbols

Index

2D lists, in Python 32

3D plotting, MATLAB 213, 216
3D plots, combining 218
color maps 215
lightning effects 216
mesh, customization 217
mesh, for grid-like plots 216
shading 215
surface appearance 214
surface plots with surf 214

advanced applications, in MATLAB 319-321
advanced applications, in Python 325, 326
Anaconda 8
arithmetic operations, in MATLAB 64-67
arithmetic operations, Python 23, 75, 76
arrays, MATLAB

1D arrays 17

2D arrays 18
Atom 10

bar function, MATLAB 201
grouped bars chart 201
practical applications 203
simple bar chart, creating 201
stacked bar chart 201
stacked bars 202

box plot 226

built-in functions, Python 86, 87

cell arrays, MATLAB 20
comma-separated values (CSV) 178

contour plots 225
control flow, MATLAB 100

conditional statements 100, 101
loops 101

control flow, Python 102
conditional statements 102, 103
loops 103

correlation matrix 252

data handling in MATLAB 160
basic file operations 160-162
binary files, working with 162, 163
data cleaning, after import 169-171
data exporting 163, 164
data importing 163, 164
delimited files, importing 167, 168
different data formats, importing 168
Excel files, importing 166, 167
file import tool, using 169
files, reading 160
files, writing 160
.mat files, working with 165, 166
readtable, using 164, 165
supported formats 168, 169
text files, importing 167, 168
writetable, using 164, 165
data handling, Python
list elements, accessing 27, 28
list operations 30-32
lists, creating 26
lists, modifying 28, 29
use cases 26
data manipulation, in MATLAB 272
arrays and matrices, creating 272
arrays, reshaping 273, 274
concatenation 274
data merging and splitting 276
indexing and slicing 273
missing data, handling 276
sorting 275
data manipulation, in Python
with Pandas and NumPy 281-284
data types, in Python 23
arithmetic operations 23, 24
data handling 26
integers 23
lists 25, 26
strings 24
data types, MATLAB

logical types 17
numeric types 17
data visualization 197
data visualization, in Python 234
importance 234
libraries 234
Matplotlib, using 234-236
Plotly and interactive visualizations 238-240
Seaborn and statistical data visualization 236, 237
dictionaries 12
dictionaries, Python 38
built-in functions 42, 43
characteristics 38
creating 38-40
elements, accessing 40
elements, modifying 40
elements, removing 41
methods 41, 42
nested dictionaries 43, 44

E
error bar plots 222
exploratory data analysis (EDA) 252
Extensible Markup Language (XML) 181

F

Fast Fourier transform (FFT) 316
file handling in Python 176, 177
CSV files, working with 178
CSV handling with pandas 179
data formats, working with 180, 181
JSON files, working with 180
practical examples and use cases 182, 183
filled contour plots 228, 229
function 7
functions, MATLAB 134, 135
built-in functions 6
creating 135-137
function with multiple outputs 137-141
inline functions 141
user-defined functions 6, 7
functions, Python 12, 142, 143
anonymous functions 148
function with return values 144
lambda functions 148, 149
recursive functions 146, 147
variable scope 145

heatmaps 221
Hilbert matrix 70
histograms 219, 220

hue, saturation, value (HSV) color space 319

IDE/editor
selecting 8
image processing, in MATLAB 317-319
image processing, in Python 322-324
integers, Python 23
integrated development and learning environment (IDLE) 8
integrated development environment (IDE) 8

JavaScript Object Notation (JSON) 180
Jupyter Notebook 8

LEGB rule 146
list operations, Python 78-86
lists 11
lists, Python 25
logarithmic plots 226, 227
logical operations, MATLAB 71-74
loops, MATLAB

for loop 101

while loop 102
loops, Python 103

for loop 103, 104

while loop 104

MATLAB 1, 2, 64
arithmetic operations 5, 64-67
Command Window 2
control flow 100
Current Folder panel 2
data types 3, 4
Editor 3
environment 2
functions 5, 134
logical operations 71-74
matrix operations 67-70

scripts 6, 7, 141
Toolboxes 3
variables 3
versus Python 12, 13
Workspace 2

MATLAB-based concepts 272
data manipulation 272-276
statistical functions 276, 277
tables 278-280

MATLAB, versus Python
additional activities 303-311
advanced applications 342-344
advanced topics 297-299
DataFrames, working with 295-297
data manipulation 287-292
image processing examples 337-341
miscellaneous 303
signal processing examples 326-336
statistical functions 292-294
tables, working with 295-297
visualization 300-302

MATLAB visualization
bar function 201
plot function 198-200
scatter function 203, 204

Matplotlib 240

matrices, MATLAB 18

matrices, Python 33

matrix operations, MATLAB 18, 67-71

nested dictionaries
working with 43

Numerical Python 12

NumPy 281, 287

Pandas 281, 287

Pascal matrix 70

Pentadiagonal matrix 71

Pickle 181

pie charts 223, 224

pip 10

plot customization, in MATLAB 205
labels, adding 207, 208
line styles, using 209-211
multiple data series, using 208, 209

tips 212, 213
title addition 205, 206
plot function 198
plot function, in MATLAB 198-200
plotting in Python
plots, customizing 243-249
with Matplotlib 240-243
polar plots 221
Power Spectral Density (PSD) 333
PyCharm 9
Python 7, 10, 22, 75
2D list 32
arithmetic operations 11, 75, 76
built-in functions 86, 87
control flow 102
data types 11
dictionaries 12, 38
functions 12, 142
installing 8
list 11
list operations 78-86
matrices 33
NumPy for numerical computing 12
sets 45
string manipulation 76-78
tuples 33
using 8
variables 11
Python-based concepts 280
data manipulation, with Pandas and NumPy 281-284
statistical analysis 284-287
Python Package Index (PyPI) 10
Python scripts
writing 150

quiver plots 227
R
Random matrix 69
recursive functions, Python 146, 147
call stack LIFO, using 147, 148
S

scatter function, MATLAB 203, 204
SciPy 287

script 7
script, MATLAB 141
creating 142
features 141, 142
referencing 142
running 142
sets, Python 45
characteristics 45
creating 45, 46
elements, accessing 47
elements, modifying 47, 48
methods 50, 51
set operations 48-50
signal processing, in MATLAB 316, 317
signal processing, in Python 321, 322
specialized plots, in MATLAB 219
box plots 226
contour plots 225
error bar plots 222
filled contour plots 228
heatmaps 221
histograms 219, 220
logarithmic plots 226, 227
pie charts 223, 224
polar plots 221
quiver plots 227
stacked bar plots 223
stair plot 230, 231
stem plots 224, 225
surface plot with contours 229
waterfall plots 228
specialized plots, in Python 249
heatmaps 251-254
histograms 250, 251
polar plots 254, 255
Spyder 9
stacked bar plots 223
stair plot 230, 231
statistical analysis in Python 284-287
statistical functions in MATLAB 276, 277
stem plots 224, 225
string manipulation, Python 76-78
strings, MATLAB 18, 19
operations 19
strings, Python 24
common string methods 25
escape characters 25
structures, MATLAB 20, 21

Sublime Text 10
surface plot with contours 229

tables in MATLAB
creating 278
filtering 280
rows, adding and removing 279
sorting 280
Thonny 9
Tridiagonal matrix 70
tuple 11
tuples, Python 33
built-in functions 37, 38
characteristics 33
creating 34
definition 33
methods 37
syntax 33
tuple elements, accessing 35
tuple operations 35, 36

variable scope, Python 145
managing 146
variables, in MATLAB
creating 16
defining 16
displaying 16, 17
variables, in Python
defining 22
Visual Studio Code (VS Code) 9

waterfall plots 228

YAML Ain’t Markup Language (YAML) 181

	Cover
	Title Page
	Copyright Page
	Dedication Page
	About the Authors
	About the Reviewers
	Acknowledgements
	Preface
	Table of Contents
	1. Introduction to MATLAB and Python
	Introduction
	Structure
	Objectives
	1.1 MATLAB
	1.1.1 MATLAB environment
	1.1.2 Basic syntax and operations
	Arithmetic operations
	Functions and scripts

	1.2 Python
	1.2.1 Setting up the environment
	1.2.2 Basic syntax and operations
	Variables and data types
	Arithmetic operations
	Lists, tuples, and dictionaries
	Functions
	NumPy for numerical computing

	1.3 Comparison between MATLAB and Python
	Conclusion
	Exercises

	2. MATLAB and Python Variables and Data Types
	Introduction
	Structure
	Objectives
	2.1 MATLAB
	2.1.1 Defining variables in MATLAB
	2.1.2 Creating variables
	2.1.3 Displaying variables
	2.1.4 Data types in MATLAB
	2.1.5 Arrays and matrices
	Matrix operations

	2.1.6 Strings
	String operations

	2.1.7 Cell arrays
	2.1.8 Structures

	2.2 Python
	2.2.1 Defining variables in Python
	2.2.2 Data types in Python
	2.2.3 Integers
	2.2.4 Arithmetic operations
	2.2.5 Strings
	Common string methods
	Escape characters

	2.2.6 Lists
	2.2.7 Use cases and importance in data handling
	Creating lists
	Accessing list elements
	Modifying lists
	List operations
	Types of lists (2D lists)

	2.2.8 Matrix representation and basic operations
	2.2.9 Tuples
	Creating tuples
	Accessing tuple elements
	Tuple operations
	Tuple methods and built-in functions

	2.2.10 Dictionaries
	Creating dictionaries
	Accessing and modifying dictionary elements
	Dictionary methods and functions
	Working with nested dictionaries

	2.2.11 Sets
	Creating sets
	Accessing and modifying set elements
	Set operations
	Set methods

	2.3 Comparison of examples via MATLAB and Python
	Conclusion
	Exercises

	3. Basic Operations in MATLAB and Python Languages
	Introduction
	Structure
	Objectives
	3.1 MATLAB
	3.1.1 Arithmetic operations in MATLAB
	3.1.2 Matrix operations in MATLAB
	3.1.3 Logical operations in MATLAB

	3.2 Python
	3.2.1 Arithmetic operations in Python
	3.2.2 String manipulation in Python
	3.2.3 List operations in Python
	3.2.4 Basic built-in functions in Python

	3.3 Comparison of examples via MATLAB and Python
	Conclusion
	Exercises

	4. Control Flow and Structures in MATLAB and Python
	Introduction
	Structure
	Objectives
	4.1. Control flow in MATLAB
	4.1.1 Conditional statements in MATLAB
	4.1.2 Loops in MATLAB
	For loop
	While Loop

	4.2. Control flow in Python
	4.2.1 Conditional statements in Python
	4.2.2 Loops in Python
	For loop
	While Loop

	4.3. Common examples in MATLAB and Python
	Conclusion
	Exercises

	5. Functions and Scripts in MATLAB and Python
	Introduction
	Structure
	Objectives
	5.1 Functions and scripts in MATLAB
	5.1.1 Functions
	5.1.2 Creating functions in MATLAB
	5.1.3 Function with multiple outputs
	5.1.4 Inline functions
	5.1.5 Short note on scripts in MATLAB
	Referencing a script inside another script

	5.2 Functions and scripts in Python
	5.2.1 Understanding functions
	5.2.2 Functions with return values
	5.2.3 Scope of variables in functions
	Understanding variable scope in Python
	Python using scope
	Python managing scope

	5.2.4 Recursive functions
	Recursion using the call stack LIFO

	5.2.5 Lambda functions and anonymous functions
	5.2.6 Writing Python scripts

	5.3 Comparative study in MATLAB and Python
	Conclusion
	Exercises
	MATLAB
	Python
	Common practice questions in MATLAB and Python

	6. Data Handling in MATLAB
	Introduction
	Structure
	Objectives
	6.1 Introduction to data handling in MATLAB
	6.2 Reading from and writing to files
	6.2.1 Basic file operations
	6.2.2 Working with binary files

	6.3 Importing and exporting data
	6.3.1 Using readtable and writetable
	6.3.2 Working with .mat files
	6.3.3 Importing Excel files
	6.3.4 Importing text and delimited files

	6.4 Handling different data formats
	6.4.1 Supported formats
	6.4.2 Using the file import tool
	6.4.3 Data cleaning after import

	Conclusion
	Exercises

	7. Data Handling in MATLAB and Python
	Introduction
	Structure
	Objectives
	7.1 File handling and data formats in Python
	7.1.1 File handling in Python
	7.1.2 Working with CSV files
	Using pandas for CSV handling

	7.1.3 Working with JSON files
	7.1.4 Working with other data formats
	7.1.5 Practical examples and use cases

	7.2 Comparative study of MATLAB and Python via examples
	Conclusion
	Exercises
	Basic file operations
	Working with different file modes
	Reading and writing CSV files
	Reading and writing JSON files
	Handling binary files
	Advanced file handling operations

	8. Plotting and Visualization in MATLAB
	Introduction
	Structure
	Objectives
	8.1 plot function as foundation of MATLAB visualization
	8.2 Bar function and visualizing categorical data
	8.3 Exploring variable relationship through the scatter function
	8.4 Customization of plots in MATLAB
	8.4.1 Using titles to give context to plot
	8.4.2 Using labels to identify axes
	8.4.3 Using legends for multiple data series
	8.4.4 Using line styles to enhance plot readability
	8.4.5 A customized plot
	8.4.6 Additional customization tips

	8.5 Introduction to 3D plotting
	8.6 Specialized plots in MATLAB
	8.6.1 Using histograms to visualize data distributions
	8.6.2 Using heatmaps to visualize matrix data
	8.6.3 Using polar plots to visualize angular data
	8.6.4 Error bar plots and representing variability
	8.6.5 Stacked bar plots and comparing grouped data
	8.6.6 Pie charts and proportional data visualization
	8.6.7 Stem plots and visualizing discrete data
	8.6.8 Contour plots and level curves
	8.6.9 Box plots and statistical distribution
	8.6.10 Logarithmic plots and visualizing exponential data
	8.6.11 Quiver plots and visualizing vector fields
	8.6.12 Waterfall plots and sequential surface representation
	8.6.13 Filled contour plots and enhanced contours
	8.6.14 Surface plot with contours
	8.6.15 Stair plot in MATLAB

	Conclusion
	Exercises

	9. Plotting and Visualization in Python
	Introduction
	Structure
	Objectives
	9.1 Data visualization and libraries in Python
	9.1.1 Importance of data visualization
	9.1.2 Libraries for data visualization in Python
	9.1.3 Matplotlib as the foundational library
	9.1.4 Seaborn and statistical data visualization
	9.1.5 Plotly and interactive visualizations

	9.2 Basic plotting in Python with Matplotlib
	9.2.1 Introduction to Matplotlib

	9.3 Customizing plots in Python
	9.3.1 Specialized plots in Python
	9.3.2 Introduction to specialized plots
	9.3.2.1 Histograms for visualizing distributions
	9.3.2.2 Heatmaps for visualizing matrix relationships
	9.3.2.3 Polar plots using visualizing angular data

	9.4 Comparison of examples via MATLAB and Python
	Conclusion
	Exercises

	10. Working with Data in MATLAB and Python
	Introduction
	Structure
	Objectives
	10.1 MATLAB-based concepts
	10.1.1 Data manipulation in MATLAB
	10.1.2 Statistical functions in MATLAB
	10.1.3 Tables in MATLAB

	10.2 Python-based concepts
	10.2.1 Data manipulation with Pandas and NumPy
	10.2.2 Statistical analysis in Python

	10.3 Comparative study via MATLAB and Python codes
	10.3.1 Data manipulation
	10.3.2 Statistical functions
	10.3.3 Working with tables/DataFrames
	10.3.4 Advanced topics
	10.3.5 Visualization
	10.3.6 Miscellaneous
	10.3.7 Additional activities

	Conclusion
	Exercises
	MATLAB
	Python

	11. Signal and Image Processing in MATLAB and Python
	Introduction
	Structure
	Objectives
	11.1 MATLAB-based content
	11.1.1 Signal processing in MATLAB
	11.1.2 Image processing in MATLAB
	11.1.3 Advanced applications

	11.2 Python-based content
	11.2.1 Signal processing in Python
	11.2.2 Image processing in Python
	11.2.3 Advanced applications

	11.3 Comparative study of MATLAB and Python codes
	11.3.1 Signal processing examples
	11.3.2 Image processing examples
	11.3.3 Advanced applications

	Conclusion
	Exercises

	12. Case Studies in MATLAB and Python
	Introduction
	Structure
	Objectives
	Chapter-wise exercises
	Conclusion

	Index

